Advertisement

Space-time analysis of sea level in the North Atlantic from TOPEX/Poseidon satellite altimetry

  • S. M. Barbosa
  • M. J. Fernandes
  • M. E. Silva
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 129)

Abstract

Spatial and temporal sea level variability in the North Atlantic is investigated from Topex/Poseidon (T/P) altimetry data. Time series of sea level anomalies on a regular 5° grid are analysed. Non-linear denoising through thresholding in the wavelet transform domain is carried out for each series in order to remove noise while preserving non-smooth features. Principal Component Analysis (PCA) is used to obtain a spatio-temporal description of the sea level field. To avoid modal mixing and improve interpretation of the principal modes, PCA is implemented separately for seasonal and trend components of the sea level field obtained from a wavelet-based multiresolution analysis. The leading pattern of the seasonal field reflects the dominance of a stable annual cycle over the study area and the change in the seasonal regime approaching the equator with contribution of the semi-annual cycle and phaseshift in the annual cycle in the tropical Atlantic. The leading pattern of the trend field is a broad spatial pattern associated with North Atlantic Oscillation (NAO), reflecting the influence of atmospheric conditions on interannual sea level variability.

Keywords

satellite altimetry sea level change discrete wavelet transform PCA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AVISO (1996). User handbook merged TOPEX/POSEIDON Products, AVI-NT-02-101-CN ed 3.0, 1996Google Scholar
  2. Donoho, D. L. and I. M. Johnstone (1995). Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association, 90, pp. 1200–1224CrossRefGoogle Scholar
  3. Efthymiadis, D., F. Hernandez and P. Le Traon (2002). Large-scale sea level variations and associated atmospheric forcing in the subtropical North-East Atlantic Ocean. Deep Sea Research II, 42, pp. 3957–3981CrossRefGoogle Scholar
  4. Esselborn, S., and C. Eden (2001). Sea Surface Height changes in the North Atlantic Ocean related to the North Atlantic Oscillation. Geophys. Res. Lett., 28, 3473–3476CrossRefGoogle Scholar
  5. Fernandes M. J., L. Bastos and M. Antunes (2003) Coastal Satellite Altimetry — Methods for Data Recovery and Validation, Proceedings of the 3rd Meeting of the International Gravity & Geoid Commission (GG2002), pp. 02–307, Tziavos, I. N. (Ed.), Editions ZITI.Google Scholar
  6. Ferry, N., G. Reverdin and A. Oschlies (2000). Seasonal sea surface height variability in the North Atlantic Ocean. Journal of Geophysical Research — Oceans, 105(C3), pp. 6307–6326CrossRefGoogle Scholar
  7. Hendricks, J., R. Leben and G. Born (1996). Empirical Orthogonal Function analysis of global T/P altimeter data and implications for detection of global sea level rise. Journal of Geophysical Research, 101(C6), pp. 14131–14145CrossRefGoogle Scholar
  8. Hurrell, J. (1995). Decadal trend in the NAO: regional temperatures and precipitation. Science, 269, pp. 676–679Google Scholar
  9. Hurrel, J. and van Loon (1997) Decadal variations in climate associated with the NAO. Climate Change, 36, 301–326CrossRefGoogle Scholar
  10. Jollife, I. T. (2002). Principal Component Analysis, SpringerGoogle Scholar
  11. Kim, K. and Q. Wu (1999). A comparison study of EOF techniques: analysis of non-stationary data with periodic statistics. Journal of Climate, 12, pp. 185–189CrossRefGoogle Scholar
  12. Mallat, S. G. (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, pp. 674–693CrossRefGoogle Scholar
  13. Marshall, J., Y. Kushnir, D. Battisti, P. Chang, A. Czaja, R. Dickson, J. Hurrell, M. McCartney, R. Saravanan, and M. Visbeck (2001). Review: North Atlantic climate variability: Phenomena, Impacts and Mechanisms. Int. Journal of Climatology, 21, pp. 1862–1898Google Scholar
  14. Nerem, R. S., K. E. Rachlin and B. D. Beckley (1997). Characterization of global mean sea level variations observed by TOPEX/POSEIDON using empirical orthogonal functions. Surveys in Geophysics, 18, pp. 293–302.CrossRefGoogle Scholar
  15. Percival, D. and A. Walden (2000). Wavelet methods for time series analysis, Cambridge University PressGoogle Scholar
  16. Smith, W. H. F. and P. Wessel (1990). Gridding with continuous curvature splines in tension. Geophysics, 55, pp. 293–305CrossRefGoogle Scholar
  17. von Storch, H. and F. W. Zwiers (1999). Statistical Analysis in Climate Research, Cambridge University PressGoogle Scholar
  18. Volkov, D. L. and H. M. van Aken. (2003). Annual and interannual variability of sea level in the northern North Atlantic Ocean, Journal of Geophysical Research, 108,C6, pp. 35-1–35-13, doi: 10.1029/2002JC001459CrossRefGoogle Scholar
  19. Wang, Y. M. (2001). GSFC00 Mean Sea Surface, gravity anomaly, and vertical gravity gradient from satellite altimeter data, Journal of Geophysical Research, 106,C12, pp.31167–31174.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • S. M. Barbosa
    • 1
  • M. J. Fernandes
    • 1
  • M. E. Silva
    • 1
  1. 1.Department of Applied Mathematics, Faculdade de CiênciasUniversidade do PortoPortoPortugal

Personalised recommendations