Schwarz Waveform Relaxation Method for the Viscous Shallow Water Equations

  • Véronique Martin
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 40)


We are interested in solving time dependent problems using domain decomposition method. In the classical methods, one discretizes first the time dimension and then one solves a sequence of steady problems by a domain decomposition method. In this paper, we study a Schwarz Waveform Relaxation method which treats directly the time dependent problem. We propose algorithms for the viscous Shallow Water equations.


Wind Stress Shallow Water Equation Dirichlet Condition Domain Decomposition Method Time Dependent Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. J. Gander, L. Halpern, and F. Nataf. Optimal convergence for overlapping and non-overlapping Schwarz waveform relaxation. In C.-H. Lai, P. Bjøstad, M. Cross, and O. Widlund, editors, Eleventh international Conference of Domain Decomposition Methods., 1999.Google Scholar
  2. M. J. Gander and A. M. Stuart. Space time continuous analysis of waveform relaxation for the heat equation. SIAM J., 19:2014–2031, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  3. M. J. Gander and H. Zhao. Overlapping Schwarz waveform relaxation for parabolic problems in higher dimension. In A. Handlovičová, M. Komorníkova, and K. Mikula, editors, Proceedings of Algoritmy 14, pages 42–51. Slovak Technical University, September 1997.Google Scholar
  4. C. Japhet. Optimized Krylov-Ventcell method. Application to convectiondiffusion problems. In P. E. Bjøstad, M. S. Espedal, and D. E. Keyes, editors, Proceedings of the 9th international conference on domain decomposition methods, pages 382–389., 1998.Google Scholar
  5. C. Japhet, F. Nataf, and F. Rogier. The optimized order 2 method. application to convection-diffusion problems. Future Generation Computer Systems FUTURE, 18, 2001.Google Scholar
  6. T. G. Jensen and D. A. Kopriva. Comparison of a finite difference and a spectral collocation reduced gravity ocean model. Modelling Marine Systems, 2:25–39, 1990.Google Scholar
  7. E. Lelarasmee, A. E. Ruehli, and A. L. Sangiovanni-Vincentelli. The waveform relaxation method for time-domain analysis of large scale integrated circuits. IEEE Trans. on CAD of IC and Syst., 1:131–145, 1982.CrossRefGoogle Scholar
  8. J.-L. Lions and E. Magenes. Nonhomogeneous Boundary Value Problems and Applications, volume I. Springer, New York, Heidelberg, Berlin, 1972.Google Scholar
  9. P.-L. Lions. On the Schwarz alternating method. III: a variant for nonoverlapping subdomains. In T. F. Chan, R. Glowinski, J. Périaux, and O. Widlund, editors, Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, held in Houston, Texas, March 20–22, 1989, Philadelphia, PA, 1990. SIAM.Google Scholar
  10. V. Martin. Méthode de décomposition de domaine de type relaxation d'ondes pour des équations de l'océanographie. PhD thesis, 2003.Google Scholar
  11. F. Nataf and F. Rogier. Factorization of the convection-diffusion operator and the Schwarz algorithm. M 3 AS, 5(1):67–93, 1995.MathSciNetzbMATHGoogle Scholar
  12. J. Pedlosky. Geophysical Fluid Dynamics. Springer Verlag, New-York, 1987.zbMATHGoogle Scholar
  13. A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Differential Equations. Oxford Science Publications, 1999.Google Scholar
  14. H. A. Schwarz. Über einen Grenzübergang durch alternierendes Verfahren. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 15:272–286, May 1870.zbMATHGoogle Scholar
  15. S. Vandewalle. Parallel multigrid waveform relaxation for parabolic problems. B. G. Teubner, Stuttgart, 1993.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Véronique Martin
    • 1
  1. 1.LAGA Université Paris XIIIParis

Personalised recommendations