Parallel Simulation of Multiphase/Multicomponent Flow Models

  • Erlend Øian
  • Magne S. Espedal
  • I. Garrido
  • G. E. Fladmark
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 40)


The simulation of flow in porous media is a computationally demanding task. Thermodynamical equilibrium calculations and complex, heterogeneous geological structures normally gives a multiphysics/multidomain problem to solve. Thus, efficient solution methods are needed. The research simulator Athena is a 3D, multiphase, multicomponent, porous media flow simulator. A parallel version of the simulator was developed based on a non-overlapping domain decomposition strategy, where the domains are defined a-priori from e.g. geological data. Selected domains are refined with locally matching grids, giving a globally non-matching, unstructured grid. In addition to the space domain, novel algorithms for parallel processing in time based on a predictor-corrector strategy has been successfully implemented.

We discuss how the domain decomposition framework can be used to include different physical and numerical models in selected sub-domains. Also we comment on how the two-level solver relates to multiphase upscaling techniques.

Adding communication functionality enables the original serial version to run on each sub-domain in parallel. Motivated by the need for larger time steps, an implicit formulation of the mass transport equations has been formulated and implemented in the existing parallel framework. Further, as the Message Passing Interface (MPI) is used for communication, the simulator is highly portable. Through benchmark experiments, we test the new formulation on platforms ranging from commercial super-computers to heterogeneous networks of workstations.


Porous Medium Coarse Grid Domain Decomposition Message Passing Interface Coarse Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J. Aarnes, H. Reme, and M. S. Espedal. A least-squares approach for upscaling and the acceleration of a galerkin technique. Presented at the Upscaling Downunder Conference, Melbourne, Australia, 7–10 February, 2000.Google Scholar
  2. L. Baffico, S. Bernard, Y. Maday, G. Turinici, and G. Zerah. Parallel in time molecular dynamics simulations. Phys. Rev. E., 66:057701, 2002.CrossRefGoogle Scholar
  3. W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000.zbMATHGoogle Scholar
  4. M. Chaib, G. E. Fladmark, and M. S. Espedal. Implicit treatment of molar mass equations in secondary oil migration. Computing and Visualization in Science, 4(3):191–196, February 2002.CrossRefzbMATHGoogle Scholar
  5. Y. Chen, L. J. Durlofsky, M. Gerritsen, and X. H. Wen. A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations. Advances in Water Resources, (26):1041–1060, 2003.CrossRefGoogle Scholar
  6. R. Ewing, R. Lazarov, T. Lin, and Y. Lin. The mortar finite volume element methods and domain decomposition. East-West J. Numer. Math., 8:93–110, 2000.MathSciNetzbMATHGoogle Scholar
  7. I. Garrido, M. S. Espedal, and G. E. Fladmark. A convergent algorithm for time parallelization applied to reservoir simulation. Presented at DD15, 2003.Google Scholar
  8. M. Karimi-Fard, L. J. Durlofsky, and K. Aziz. An efficient discrete fracture model applicable for general purpose reservoir simulators. SPE 79699, 2003.Google Scholar
  9. M. Karimi-Fard and A. Firoozabadi. Numerical simulation of water injection in fractured media using the discrete-fracture model and the Galerkin method. SPE Reservoir Evaluation & Engineering, 6(2):117–126, April 2003.CrossRefGoogle Scholar
  10. S. Knapek. Upscaling techniques based on subspace correction and coarsegrid approximation. InSitu, 22(1):35–58, 1998. Special issue on reservoir simulation.Google Scholar
  11. S. Knapek. Matrix-dependent multigrid homogenization for diffusion problems. SIAM J. Sci. Comp., 20(2):515–533, 1999.zbMATHMathSciNetCrossRefGoogle Scholar
  12. S. H. Lee, P. Jenny, and H. A. Tchelepi. A finite-volume method with hexahedral multiblock grids for modeling flow in porous media. Computational Geosciences, 6:353–379, 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  13. S. H. Lee, C. Wolfsteiner, L. J. Durlofsky, P. Jenny, and H. A. Tchelepi. New developments in multiblock reservoir simulation: Black oil modeling, nonmatching subdomains and near-well upscaling. Society of Petroleum Engineers, (SPE 79682), 2003.Google Scholar
  14. Q. Lu, M. Peszynska, and M. F. Wheeler. A parallel multiblock black-oil model in multimodel implementation. SPE Journal, 7(3):278–287, September 2002. SPE 79535.Google Scholar
  15. J. D. Moulton, J. E. Dendy, and J. M. Hyman. The black box multigrid numerical homogenization algorithm. J. Comput. Phys., (142):80–108, 1998. Article No. CP985911.MathSciNetCrossRefzbMATHGoogle Scholar
  16. E. Øian. Modeling Flow in Fractured and Faulted Media. Dr.Scient. thesis, in preparation, University of Bergen, 2004.Google Scholar
  17. E. Øian, I. Garrido, M. Chaib, G. E. Fladmark, and M. S. Espedal. Modeling fractured and faulted regions: Local grid refinement methods for implicit solvers. Computing and Visualization in Science, 2003. Accepted for Publication.Google Scholar
  18. G. Å. Øye and H. Reme. Parallelization of a compositional simulator with a galerkin coarse/fine method. In P. A. et al., editor, Lecture Notes in Computer Science, pages 586–594. Springer-Verlag, Berlin, 1999. LNCS 1685.Google Scholar
  19. H. Reme, M. Espedal, and G. E. Fladmark. A Preconditioning Technique as an Upscaling Procedure, volume 131 of The IMA Volumes in Mathematics and its Applications, pages 283–297. Springer Verlag, Heidelberg, 2002.Google Scholar
  20. H. Reme and G. Å. Øye. Use of local grid refinement and a galerkin technique to study secondary migration in fractured and faulted regions. Computing and Visualization in Science, 2:153–162, 1999.CrossRefzbMATHGoogle Scholar
  21. H. Reme, G. Å. Øye, M. S. Espedal, and G. E. Fladmark. Parallelization of a compositional reservoir simulator. In Z.-C. S. Z. Chen, R. E. Ewing, editor, Numerical Treatment of Multiphase Flows in Porous Media, number 552 in Lecture Notes in Physics, pages 244–267. Springer-Verlag, Berlin, 2000.Google Scholar
  22. A. Skjellum, D. G. Wooley, Z. Lu, M. Wolf, P. V. Bangalore, A. Lumsdaine, J. M. Squyres, and B. McCandless. Object-oriented analysis and design of the message passing interface. Concurrency and Computation: Practice and Experience, 13:245–292, 2001. (DOI: 10.1002/cpe.556).CrossRefzbMATHGoogle Scholar
  23. B. F. Smith, P. E. Bjørstad, and W. Gropp. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, 1996.Google Scholar
  24. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI: The Complete Reference. MIT Press, 1996.Google Scholar
  25. J. M. Squyres, J. Willcock, B. C. McCandless, P. W. Rijks, and A. Lumsdaine. Object Oriented MPI (OOMPI): A C++ Class Library for MPI. Open Systems Laboratory Pervasive Technologies Labs, Indiana University, September 3 2003. Scholar
  26. R. Teigland. On some variational acceleration techniques and related methods for local refinement. Int. J. Numer. Meth. Fluids, (28):945–960, 1998.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Erlend Øian
    • 1
  • Magne S. Espedal
    • 1
  • I. Garrido
    • 1
  • G. E. Fladmark
    • 1
  1. 1.Center for Integrated Petroleum Research (CIPR)University of BergenBergen

Personalised recommendations