Choosing Nonmortars: Does it Influence the Performance of FETI-DP Algorithms?

  • Dan Stefanica
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 40)


We investigate whether different choices of nonmortar sides for the geometrically conforming partitions inherent to FETI-DP influence the convergence of the algorithms for four different preconditioners. We conclude experimentally that they do not, although better condition number estimates exist for a Neumann-Dirichlet choice of nonmortars.


Elliptic Problem Domain Decomposition Method Corner Node Preconditioned Conjugate Gradient Iteration Condition Number Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. C. Bernardi, Y. Maday, and A. Patera. A new non conforming approach to domain decomposition: The mortar element method. In H. Brezis and J.-L. Lions, editors, Collége de France Seminar. 1994.Google Scholar
  2. M. Dryja and W. Proskurowski. A FETI-DP method for the mortar discretization of elliptic problems with discontinuous coefficients. In R. K. et al., editor, Proceedings of the 15th International Conference on Domain Decomposition Methods, Berlin, 2004. Springer-Verlag.Google Scholar
  3. M. Dryja and O. B. Widlund. A FETI-DP method for a mortar discretization of elliptic problems. In L. Pavarino and A. Toselli, editors, Proceedings of the ETH Workshop on DDM. Springer-Verlag, 2002a.Google Scholar
  4. M. Dryja and O. B. Widlund. A generalized FETI-DP method for the mortar discretization of elliptic problems. In I. H. et al., editor, Fourteenth International Conference on Domain Decomposition Methods, pages 27–38., 2002b. Mexico, 2002.Google Scholar
  5. C. Farhat, M. Lesoinne, P. Le Tallec, K. Pierson, and D. Rixen. FETI-DP: A dual-primal unified FETI method — part I: A faster alternative to the two-level FETI method. Technical Report U-CAS-99-15, University of Colorado at Boulder, 1999.Google Scholar
  6. C. Farhat, M. Lesoinne, and K. Pierson. A scalable dual-primal domain decomposition method. Numer. Lin. Alg. Appl., 7:687–714, 2000.MathSciNetCrossRefGoogle Scholar
  7. H.-H. Kim and C.-O. Lee. A FETI-DP preconditioner for elliptic problems on nonmatching grids. Technical Report 02-9, KAIST, 2002.Google Scholar
  8. A. Klawonn, O. B. Widlund, and M. Dryja. Dual-Primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients. SIAM J. Numer. Anal., 40:159–179, 2002.MathSciNetCrossRefGoogle Scholar
  9. C. Lacour and Y. Maday. Two different approaches for matching nonconforming grids: the mortar element method and the FETI method. BIT, 37:720–738, 1997.MathSciNetGoogle Scholar
  10. J. Mandel and R. Tezaur. On the convergence of a Dual-Primal substructuring method. Numer. Math., 88:543–558, 2001.MathSciNetCrossRefGoogle Scholar
  11. D. Stefanica. A numerical study of FETI algorithms for mortar finite element methods. SIAM J. Sci. Comp., 23(4):1135–1160, 2001.zbMATHMathSciNetCrossRefGoogle Scholar
  12. D. Stefanica. FETI and FETI-DP methods for spectral and mortar spectral elements: A performance comparison. J. Sci. Comp., 17(1–4):629–637, 2002.zbMATHMathSciNetCrossRefGoogle Scholar
  13. B. Wohlmuth. A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal., 38:989–1012, 2000.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Dan Stefanica
    • 1
  1. 1.Department of MathematicsCity University of New York, Baruch CollegeNew York

Personalised recommendations