Surface Parameterization: a Tutorial and Survey

  • Michael S. Floater
  • Kai Hormann
Part of the Mathematics and Visualization book series (MATHVISUAL)

Summary

This paper provides a tutorial and survey of methods for parameterizing surfaces with a view to applications in geometric modelling and computer graphics. We gather various concepts from differential geometry which are relevant to surface mapping and use them to understand the strengths and weaknesses of the many methods for parameterizing piecewise linear surfaces and their relationship to one another.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Aksoylu, A. Khodakovsky, and P. Schröder. Multilevel solvers for unstructured surface meshes. Preprint, 2003.Google Scholar
  2. 2.
    N. Arad and G. Elber. Isometric texture mapping for free-form surfaces. Computer Graphics Forum, 16(5):247–256, 1997.CrossRefGoogle Scholar
  3. 3.
    L. Balmelli, G. Taubin, and F. Bernardini. Space-optimized texture maps. Computer Graphics Forum, 21(3):411–420, 2002. Proceedings of Eurographics 2002.CrossRefGoogle Scholar
  4. 4.
    C. Bennis, J.-M. Vézien, and G. Iglésias. Piecewise surface flattening for non-distorted texture mapping. Proc. ACM SIGGRAPH '91, 25(4):237–246, 1991.CrossRefGoogle Scholar
  5. 5.
    E. Bier and K. Sloan. Two-part texture mappings. IEEE Computer Graphics and Applications, 6(9):40–53, 1986.CrossRefGoogle Scholar
  6. 6.
    M. M. F. Yuen C. C. L. Wang, S. S.-F. Smith. Surface flattening based on energy model. Computer-Aided Design, 34(11):823–833, 2002.CrossRefGoogle Scholar
  7. 7.
    S. Campagna and H.-P. Seidel. Parameterizing meshes with arbitrary topology. In Proceedings of Image and Multidimensional Digital Signal Processing '98, pages 287–290, 1998.Google Scholar
  8. 8.
    N. Carr and J. Hart. Meshed atlas for real time procedural solid texturing. ACM Transactions on Graphics, 21(2):106–131, 2002.CrossRefGoogle Scholar
  9. 9.
    P. Degener, J. Meseth, and R. Klein. An adaptable surface parameterization method. In Proceedings of the 12th International Meshing Roundtable, pages 227–237, 2003.Google Scholar
  10. 10.
    M. Desbrun, M. Meyer, and P. Alliez. Intrinsic parameterizations of surface meshes. Computer Graphics Forum, 21(3):209–218, 2002. Proceedings of Eurographics 2002.CrossRefGoogle Scholar
  11. 11.
    T. Duchamp, A. Certain, T. DeRose, and W. Stuetzle. Hierarchical computation of PL harmonic embeddings. Technical report, University of Washington, July 1997.Google Scholar
  12. 12.
    M. Eck, T. D. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle. Multiresolution analysis of arbitrary meshes. In Proc. ACM SIGGRAPH '95, pages 173–182, 1995.Google Scholar
  13. 13.
    E. Fiume, A. Fournier, and V. Canale. Conformal texture mapping. In Proceedings of Eurographics '87, pages 53–64, 1987.Google Scholar
  14. 14.
    M. S. Floater. Parameterization and smooth approximation of surface triangulations. Computer Aided Geometric Design, 14(3):231–250, 1997.MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    M. S. Floater. Parametric tilings and scattered data approximation. International Journal of Shape Modeling, 4(3,4):165–182, 1998.Google Scholar
  16. 16.
    M. S. Floater. Meshless parameterization and B-spline surface approximation. In R. Cipolla and R. Martin (eds.), The Mathematics of Surfaces IX, pages 1–18, London, 2000. Springer.Google Scholar
  17. 17.
    M. S. Floater. Convex combination maps. In J. Levesley, I. J. Anderson, and J. C. Mason (eds.), Algorithms for Approximation IV, pages 18–23, 2002.Google Scholar
  18. 18.
    M. S. Floater. Mean value coordinates. Computer Aided Geometric Design, 20(1):19–27, 2003.MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    M. S. Floater. One-to-one piecewise linear mappings over triangulations. Mathematics of Computation, 72(242):685–696, 2003.MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    M. S. Floater and K. Hormann. Parameterization of triangulations and unorganized points. In A. Iske, E. Quak, and M. S. Floater (eds.), Tutorials on Multiresolution in Geometric Modelling, Mathematics and Visualization, pages 287–316. Springer, Berlin, Heidelberg, 2002.Google Scholar
  21. 21.
    M. S. Floater, K. Hormann, and M. Reimers. Parameterization of manifold triangulations. In C. K. Chui, L. L. Schumaker, and J. Stöckler (eds.), Approximation Theory X: Abstract and Classical Analysis, Innovations in Applied Mathematics, pages 197–209. Vanderbilt University Press, Nashville, 2002.Google Scholar
  22. 22.
    M. S. Floater and M. Reimers. Meshless parameterization and surface reconstruction. Computer Aided Geometric Design, 18(2):77–92, 2001.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    V. A. Garanzha. Maximum norm optimization of quasi-isometric mappings. Numerical Linear Algebra with Applications, 9(6,7):493–510, 2002.MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    C. Gotsman, X. Gu, and A. Sheffer. Fundamentals of spherical parameterization for 3D meshes. ACM Transactions on Graphics, 22(3):358–363, 2003. Proc. ACM SIGGRAPH 2003.CrossRefGoogle Scholar
  25. 25.
    G. Greiner and K. Hormann. Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines. In A. Le Méhauté, C. Rabut, and L. L. Schumaker (eds.), Surface Fitting and Multiresolution Methods, Innovations in Applied Mathematics, pages 163–172. Vanderbilt University Press, Nashville, 1997.Google Scholar
  26. 26.
    X. Gu, S. Gortler, and H. Hoppe. Geometry images. ACM Transactions on Graphics, 21(3):355–361, 2002. Proc. ACM SIGGRAPH 2002.CrossRefGoogle Scholar
  27. 27.
    X. Gu and S.-T. Yau. Computing conformal structures of surfaces. Communications in Information and Systems, 2(2):121–146, 2002.MathSciNetMATHGoogle Scholar
  28. 28.
    X. Gu and S.-T. Yau. Global conformal surface parameterization. In Proceedings of the 1st Symposium on Geometry Processing, pages 127–137, 2003.Google Scholar
  29. 29.
    I. Guskov. An anisotropic mesh parameterization scheme. In Proceedings of the 11th International Meshing Roundtable, pages 325–332, 2002.Google Scholar
  30. 30.
    I. Guskov, A. Khodakovsky, P. Schröder, and W. Sweldens. Hybrid meshes: Multiresolution using regular and irregular refinement. In Proceedings of the 18th Annual Symposium on Computational Geometry, pages 264–272, 2002.Google Scholar
  31. 31.
    I. Guskov, K. Vidimče, W. Sweldens, and P. Schröder. Normal meshes. In Proc. ACM SIGGRAPH 2000, pages 95–102, 2000.Google Scholar
  32. 32.
    S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, and M. Halle. Conformal surface parameterization for texture mapping. IEEE Transactions on Visualization and Computer Graphics, 6(2):181–189, 2000.CrossRefGoogle Scholar
  33. 33.
    K. Hormann. Theory and Applications of Parameterizing Triangulations. PhD thesis, Department of Computer Science, University of Erlangen, November 2001.Google Scholar
  34. 34.
    K. Hormann and G. Greiner. MIPS: An efficient global parametrization method. In P.-J. Laurent, P. Sablonnière, and L. L. Schumaker (eds.), Curve and Surface Design: Saint-Malo 1999, Innovations in Applied Mathematics, pages 153–162. Vanderbilt University Press, Nashville, 2000.Google Scholar
  35. 35.
    K. Hormann, G. Greiner, and S. Campagna. Hierarchical parametrization of triangulated surfaces. In Proceedings of Vision, Modeling, and Visualization 1999, pages 219–226, 1999.Google Scholar
  36. 36.
    K. Hormann, U. Labsik, and G. Greiner. Remeshing triangulated surfaces with optimal parametrizations. Computer-Aided Design, 33(11):779–788, 2001.CrossRefGoogle Scholar
  37. 37.
    K. Hormann and M. Reimers. Triangulating point clouds with spherical topology. In T. Lyche, M.-L. Mazure, and L. L. Schumaker (eds.), Curve and Surface Design: Saint-Malo 2002, Modern Methods in Applied Mathematics, pages 215–224. Nashboro Press, Brentwood, 2003.Google Scholar
  38. 38.
    A. Khodakovsky, N. Litke, and P. Schröder. Globally smooth parameterizations with low distortion. ACM Transactions on Graphics, 22(3):350–357, 2003. Proc. ACM SIGGRAPH 2003.CrossRefGoogle Scholar
  39. 39.
    S. Kolmanič and N. Guid. The flattening of arbitrary surfaces by approximation with developable stripes. In U. Cugini and M. J. Wozny (eds.), From geometric modeling to shape modeling, volume 80 of International Federation for Information Processing, pages 35–46. Kluwer Academic Publishers, Boston, 2001.Google Scholar
  40. 40.
    G. Kós and T. Várady. Parameterizing complex triangular meshes. In T. Lyche, M.-L. Mazure, and L. L. Schumaker (eds.), Curve and Surface Design: Saint-Malo 2002, Modern Methods in Applied Mathematics, pages 265–274. Nashboro Press, Brentwood, TN, 2003.Google Scholar
  41. 41.
    V. Kraevoy, A. Sheffer, and C. Gotsman. Matchmaker: constructing constrained texture maps. ACM Transactions on Graphics, 22(3):326–333, 2003. Proc. ACM SIGGRAPH 2003.CrossRefGoogle Scholar
  42. 42.
    A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin. MAPS: Multiresolution adaptive parameterization of surfaces. In Proc. ACM SIGGRAPH '98, pages 95–104, 1998.Google Scholar
  43. 43.
    Y. Lee, H. S. Kim, and S. Lee. Mesh parameterization with a virtual boundary. Computers & Graphics, 26(5):677–686, 2002.CrossRefGoogle Scholar
  44. 44.
    B. Lévy. Constrained texture mapping for polygonal meshes. In Proc. ACM SIGGRAPH 2001, pages 417–424, 2001.Google Scholar
  45. 45.
    B. Lévy. Dual domain extrapolation. ACM Transactions on Graphics, 22(3):364–369, 2003. ProcȦCM SIGGRAPH 2003.CrossRefGoogle Scholar
  46. 46.
    B. Lévy and J.-L. Mallet. Non-distorted texture mapping for sheared triangulated meshes. In ProcȦCM SIGGRAPH '98, pages 343–352, 1998.Google Scholar
  47. 47.
    B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares conformal maps for automatic texture atlas generation. ACM Transactions on Graphics, 21(3):362–371, 2002. ProcȦCM SIGGRAPH 2002.CrossRefGoogle Scholar
  48. 48.
    J. Liesen, E. de Sturler, A. Sheffer, Y. Aydin, and C. Siefert. Preconditioners for indefinite linear systems arising in surface parameterization. In Proceedings of the 9th International Meshing Roundtable, pages 71–82, 2001.Google Scholar
  49. 49.
    F. Losasso, H. Hoppe, S. Schaefer, and J. Warren. Smooth geometry images. In Proceedings of the 1st Symposium on Geometry Processing, pages 138–145, 2003.Google Scholar
  50. 50.
    S. D. Ma and H. Lin. Optimal texture mapping. In Proceedings of Eurographics '88, pages 421–428, 1988.Google Scholar
  51. 51.
    W. Ma and J. P. Kruth. Parameterization of randomly measured points for least squares fitting of B-spline curves and surfaces. Computer-Aided Design, 27(9):663–675, 1995.CrossRefMATHGoogle Scholar
  52. 52.
    J. Maillot, H. Yahia, and A. Verroust. Interactive texture mapping. In ProcȦCM SIGGRAPH '93, pages 27–34, 1993.Google Scholar
  53. 53.
    J. McCartney, B. K. Hinds, and B. L. Seow. The flattening of triangulated surfaces incorporating darts and gussets. Computer-Aided Design, 31(4):249–260, 1999.CrossRefMATHGoogle Scholar
  54. 54.
    J. McCartney, B. K. Hinds, and B. L. Seow. On using planar developments to perform texture mapping on arbitrarily curved surfaces. Computers & Graphics, 24(4):539–554, 2000.CrossRefGoogle Scholar
  55. 55.
    L. Parida and S. P. Mudur. Constraint-satisfying planar development of complex surfaces. Computer-Aided Design, 25(4):225–232, 1993.CrossRefGoogle Scholar
  56. 56.
    U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics, 2(1):15–36, 1993.MathSciNetMATHGoogle Scholar
  57. 57.
    E. Praun, A. Finkelstein, and H. Hoppe. Lapped textures. In ProcȦCM SIGGRAPH 2000, pages 465–470, 2000.Google Scholar
  58. 58.
    E. Praun and H. Hoppe. Spherical parametrization and remeshing. ACM Transactions on Graphics, 22(3):340–349, 2003. ProcȦCM SIGGRAPH 2003.CrossRefGoogle Scholar
  59. 59.
    E. Praun, W. Sweldens, and P. Schröder. Consistent mesh parameterizations. In ProcȦCM SIGGRAPH 2001, pages 179–184, 2001.Google Scholar
  60. 60.
    N. Ray and B. Lévy. Hierarchical least squares conformal maps. In Proceedings of the 11th Pacific Conference on Computer Graphics and Applications, pages 263–270, 2003.Google Scholar
  61. 61.
    P. Sander, Z. Wood, S. Gortler, J. Snyder, and H. Hoppe. Multi-chart geometry images. In Proceedings of the 1st Symposium on Geometry Processing, pages 138–145, 2003.Google Scholar
  62. 62.
    P. V. Sander, J. Snyder, S. J. Gortler, and H. Hoppe. Texture mapping progressive meshes. In ProcȦCM SIGGRAPH 2001, pages 409–416, 2001.Google Scholar
  63. 63.
    E. L. Schwartz, A. Shaw, and E. Wolfson. Applications of computer graphics and image processing to 2D and 3D modeling of the functional architecture of visual cortex. IEEE Computer Graphics and Applications, 8(4):13–23, 1988.CrossRefGoogle Scholar
  64. 64.
    E. L. Schwartz, A. Shaw, and E. Wolfson. A numerical solution to the generalized mapmaker's problem: flattening nonconvex polyhedral surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(9):1005–1008, 1989.CrossRefGoogle Scholar
  65. 65.
    A. Sheffer. Spanning tree seams for reducing parameterization distortion of triangulated surfaces. In Proceedings of Shape Modeling International, pages 61–66, 2002.Google Scholar
  66. 66.
    A. Sheffer. Non-optimal parameterization and user control. In T. Lyche, M.-L. Mazure, and L. L. Schumaker (eds.), Curve and Surface Design: Saint-Malo 2002, Modern Methods in Applied Mathematics, pages 355–364. Nashboro Press, Brentwood, 2003.Google Scholar
  67. 67.
    A. Sheffer. Skinning 3D meshes. Graphical Models, 65(5):274–285, 2003.MATHCrossRefGoogle Scholar
  68. 68.
    A. Sheffer and E. de Sturler. Surface parameterization for meshing by triangulation flattening. In Proceedings of the 9th International Meshing Roundtable, pages 161–172, 2000.Google Scholar
  69. 69.
    A. Sheffer and E. de Sturler. Parameterization of faceted surfaces for meshing using angle based flattening. Engineering with Computers, 17(3):326–337, 2001.CrossRefMATHGoogle Scholar
  70. 70.
    A. Sheffer and E. de Sturler. Smoothing an overlay grid to minimize linear distortion in texture mapping. ACM Transactions on Graphics, 21(4):874–890, 2002.CrossRefGoogle Scholar
  71. 71.
    A. Sheffer, C. Gotsman, and N. Dyn. Robust spherical parametrization of triangular meshes. In Proceedings of the 4th Israel-Korea Bi-National Conference on Geometric Modeling and Computer Graphics, pages 94–99, 2003.Google Scholar
  72. 72.
    A. Sheffer and J. Hart. Seamster: inconspicuous low-distortion texture seam layout. In Proceedings of IEEE Visualization 2002, pages 291–298, 2002.Google Scholar
  73. 73.
    T. Shimada and Y. Tada. Approximate transformation of an arbitrary curved surface into a plane using dynamic programming. Computer-Aided Design, 23(2):153–159, 1991.CrossRefMATHGoogle Scholar
  74. 74.
    C. Soler, M.-P. Cani, and A. Angelidis. Hierarchical pattern mapping. ACM Transactions on Graphics, 21(3):673–680, 2002. ProcȦCM SIGGRAPH 2002.CrossRefGoogle Scholar
  75. 75.
    O. Sorkine, D. Cohen-Or, R. Goldenthal, and D. Lischinski. Bounded-distortion piecewise mesh parameterization. In Proceedings of IEEE Visualization 2002, pages 355–362, 2002.Google Scholar
  76. 76.
    V. Surazhsky and C. Gotsman. Explicit surface remeshing. In Proceedings of the 1st Symposium on Geometry Processing, pages 20–30, 2003.Google Scholar
  77. 77.
    R. Zayer, C. Rössl, and H.-P. Seidel. Variations on angle based flattening. In N. A. Dodgson, M. S. Floater, and M. A. Sabin (eds.), Advances in Multiresolution for Geometric Modelling, Mathematics and Visualization, pages 187–199 (this book), Springer, Berlin, 2004.Google Scholar
  78. 78.
    G. Zigelman, R. Kimmel, and N. Kiryati. Texture mapping using surface flattening via multi-dimensional scaling. IEEE Transactions on Visualization and Computer Graphics, 8(2):198–207, 2002.CrossRefGoogle Scholar
  79. 79.
    S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods, volume 15 of Texts in Applied Mathematics. Springer, second edition, 2002.Google Scholar
  80. 80.
    G. Choquet. Sur un type de transformation analytique généralisant la représentation conforme et définé au moyen de fonctions harmoniques. Bulletin des Sciences Mathématiques, 69:156–165, 1945.MATHMathSciNetGoogle Scholar
  81. 81.
    C. F. Gauß. Disquisitiones generales circa superficies curvas. Commentationes Societatis Regiæ Scientiarum Gottingensis Recentiores, 6:99–146, 1827.Google Scholar
  82. 82.
    G. Greiner. Variational design and fairing of spline surfaces. Computer Graphics Forum, 13(3):143–154, 1994. Proceedings of Eurographics '94.CrossRefGoogle Scholar
  83. 83.
    W. Klingenberg. A Course in Differential Geometry. Springer, Berlin, Heidelberg, 1978.MATHGoogle Scholar
  84. 84.
    H. Kneser. Lösung der Aufgabe 41. Jahresbericht der Deutschen Mathematiker-Vereinigung, 35:123–124, 1926.Google Scholar
  85. 85.
    E. Kreyszig. Differential Geometry. Dover, New York, 1991.Google Scholar
  86. 86.
    J. H. Lambert. Beyträge zum Gebrauche der Mathematik und deren Anwendung, Band 3. Buchhandlung der Realschule, Berlin, 1772.Google Scholar
  87. 87.
    G. Mercator. Nova et aucta orbis terrae descriptio ad usum navigantium emendate accommodata. Duisburg, 1569.Google Scholar
  88. 88.
    M. Meyer, H. Lee, A. H. Barr, and M. Desbrun. Generalized barycentric coordinates for irregular polygons. Journal of Graphics Tools, 7(1):13–22, 2002.MATHGoogle Scholar
  89. 89.
    C. Ptolemy. The Geography. Dover, 1991. Translated by E. L. Stevenson.Google Scholar
  90. 90.
    T. Radó. Aufgabe 41. Jahresbericht der Deutschen Mathematiker-Vereinigung, 35:49, 1926.Google Scholar
  91. 91.
    B. Riemann. Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Größe. PhD thesis, Universität Göttingen, 1851.Google Scholar
  92. 92.
    W. T. Tutte. How to draw a graph. Proceedings of the London Mathematical Society, 13:743–768, 1963.MATHMathSciNetGoogle Scholar
  93. 93.
    E. L. Wachspress. A Rational Finite Element Basis. Academic Press, New York, 1975.MATHGoogle Scholar
  94. 94.
    J. Warren. Barycentric coordinates for convex polytopes. Advances in Computational Mathematics, 6(2):97–108, 1996.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Michael S. Floater
    • 1
  • Kai Hormann
    • 2
  1. 1.Computer Science DepartmentOslo UniversityNorway
  2. 2.ISTI, CNRPisaItaly

Personalised recommendations