Advertisement

Ionospheric Tomography with GPS Data from CHAMP and SAC-C

  • Miquel García-Fernández
  • Angela Aragón
  • Manuel Hernandez-Pajares
  • Jose Miguel Juan
  • Jaume Sanz
  • Victor Rios

Summary

Abel inversion offers a straightforward way to obtain the vertical distribution of electron density with low computational load. Nevertheless the treatment of the electron density above the LEO orbit must not be neglected, specially for satellites with very low orbit such as CHAMP. This work extends previous results obtained by inverting real GPS data from LEO data, coming from satellites such as CHAMP or SAC-C. In this work, the topside ionosphere is modelled using positive elevation data. To overcome the spherical symmetry assumption, occultations are processed with the aid of Vertical Total Electron Content, estimated from ground GPS data or models. The resulting electron density profiles are compared with external real data consisting basically on basic parameters or true-height vertical profiles obtained from ionosonde measurements.

Key words

GPS LEO Electron density Occultations Abel transform Separability hypothesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Feltens J, Schaer S (1998) IGS products for the ionosphere. Proc IGS Analysis Center Workshop, ESA/ESOC Darmstadt, Germany, pp. 225–232.Google Scholar
  2. 2.
    García-Fernández M, Hernandez-Pajares M, Juan JM, Sanz J (2003) Improvement of ionospheric electron density estimation with GPSMET occultations using Abel inversion and VTEC information. J Geophys Res 108(A9): 1338.CrossRefGoogle Scholar
  3. 3.
    Hardy K, Hajj GA, Kursinski E, and Ibañez-Meier R. (1993) Accuracies of atmospheric profiles obtained from GPS occultations. Proc ION GPS-93 Conference, pp 1545–1556.Google Scholar
  4. 4.
    Hajj GA, Romans LJ (1998) Ionospheric electron density profiles obtained with the Global Positioning System: Results from the GPS/MET experiment. Radio Science 33(1): 175–190.CrossRefGoogle Scholar
  5. 5.
    Hernandez-Pajares M, Juan JM, Sanz J (1998) Global observation of the ionospheric electronic response to solar events using ground and LEO GPS data. J Geophys Res 103(A9): 20,789–20,796.Google Scholar
  6. 6.
    Hernandez-Pajares M, Juan JM, Sanz J (1999) New approaches in global ionospheric determination using ground GPS data. J Atmos Solar Terr Phys 61: 1237–1247.CrossRefGoogle Scholar
  7. 7.
    Hernandez-Pajares M, Juan JM, Sanz J (2000) Improving the Abel inversion by adding ground data LEO radio occultations in the ionospheric sounding. Geophys Res Lett 27(16): 2743–2746.Google Scholar
  8. 8.
    Jakowski N, Wehrenpfennig A, Heise S, Reigber C, Lühr H, Grunwaldt L, and Meehan TK (2002) GPS radio occultation measurements of the ionosphere from CHAMP: Early results. Geophys Res Lett 29(10): 1457, doi:10.1029/2001GL014364.CrossRefGoogle Scholar
  9. 9.
    Schreiner WS, Sokolovskiy SV, Rocken C, Hunt DC (1999) Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Science 34(4): 949–966.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Miquel García-Fernández
    • 1
  • Angela Aragón
    • 1
  • Manuel Hernandez-Pajares
    • 1
  • Jose Miguel Juan
    • 1
  • Jaume Sanz
    • 1
  • Victor Rios
    • 2
  1. 1.gAGE/UPCBarcelonaSpain
  2. 2.Physics DepartmentUniv. Nacional de TucumanArgentina

Personalised recommendations