Amplitude Variations in CHAMP Radio Occultation Signal as an Indicator of the Ionospheric Activity

  • Alexander Pavelyev
  • Jens Wickert
  • Christoph Reigber
  • Torsten Schmidt
  • Yuei-An Liou
  • Chen-Young Huang
  • Stanislav Matyugov
  • Dmitrii Pavelyev
Chapter

Summary

We showed that the amplitude of GPS occultation signal is important indicator of the ionospheric activity. Amplitude is more sensitive to small-scale ionospheric disturbances than the phase of the radio occultation (RO) signals. Local mechanism of strong ionospheric influence on the amplitude and phase of RO GPS signals is described. Critical points (tangent points) in the ionosphere, where the gradient of the electron density is perpendicular to the RO ray trajectory, strongly influence on the amplitude and phase of RO signals, and introduce multi-RO ionospheric effect in the experimental RO data. Positions of the critical points depend on the structure of the ionospheric disturbances. Analytical model for description of multi-RO ionospheric effect is introduced. Model accounts for the horizontal gradients in the ionosphere and gives analytical expressions for the phase path excess and refraction attenuation of the radio wave propagating through the disturbed ionosphere. Analytical model and analysis of the CHAMP RO data indicated that the centers of strong ionospheric influence on RO signals can exist, for example, in the sporadic E-layers inclined by 3–6 degrees relative to the local horizontal direction. In this case one can observe simultaneously with atmospheric RO the appending ROs in the ionospheric layers. Multi- RO effect can be a cause of the ionospheric interference in the communication and RO signals. Multi- RO effect can be used to study the structure of the ionospheric disturbances using the amplitude variations in RO signals. Multi- RO effect allows introducing a classification of the ionospheric influence on RO signals using the amplitude data. This indicates a possibility for separating the regular and random parts in the ionospheric contribution in the RO signals.

Key words

ionosphere electron density sporadic E-layer radio occultation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gorbunov ME (2002) Ionospheric correction and statistical optimization of radio occultation data. Radio Sci 37(5): 1084, 2000RS002370.CrossRefGoogle Scholar
  2. Hajj GA and Romans LJ (1998) Ionospheric electron density profiles obtained with the the Global Positioning System: Results from GPS/MET experiment. Radio Sci 33(1): 175–190.CrossRefGoogle Scholar
  3. Hocke K, Pavelyev A, Yakovlev O, Barthes L, and Jakowski N (1999) RO data analysis by radio holographic method. JASTP 61: 1169–1177.Google Scholar
  4. Kursinski ER, Hajj GA, Schofield JT, Linfield RP, and Hardy KR (1997) Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System. J Geophys Res 102: 23,429–23,465.CrossRefGoogle Scholar
  5. Igarashi K, Pavelyev A, Hocke K, Pavelyev D, Wickert J (2001) Observation of wave structures in the upper atmosphere by means of radio holographic analysis of the RO data. Adv Space Res 27(6–7): 1321–1327.CrossRefGoogle Scholar
  6. Igarashi K, Pavelyev A, Hocke K, Pavelyev D, Kucherjavenkov IA, Matugov S, Zakharov A, and Yakovlev O (2000) Radio holographic principle for observing natural processes in the atmosphere and retrieving meteorological parameters from RO data. Earth Planets Space 52: 968–875.Google Scholar
  7. Liou Y-A, Pavelyev AG, Huang C-Y, Igarashi K, and Hocke K (2002) Simultaneous observation of the vertical gradients of refractivity in the atmosphere and electron density in the lower ionosphere by radio occultation amplitude method. Geophys Res Lett 29(19): doi 10.1029/2002GL015155.Google Scholar
  8. Melbourne WG, Davis ES, Duncan CB, Hajj GA, Hardy KR, Kursinski ER, Meehan TK, Young LE, and Yunck TP (1994) The Application of Spaceborne GPS to Atmospheric Limb Sounding and Global Change Monitoring. JPL Publication 94–18, 147 pp.Google Scholar
  9. Pavelyev A (1998) On the possibility of radio holographic investigation on communication link satellite-to-satellite. Journal of Communications Technology and Electronics, 43(8): 939–944.Google Scholar
  10. Pavelyev A, Volkov AV, Zakharov AI, Krytikh SA, and Kucherjavenkov AI (1996) Bistatic radar as a tool for earth investigation using small satellites. Acta Astronautica 39: 721–730.CrossRefGoogle Scholar
  11. Pavelyev AG, Liou YA, Huang C Y, Reigber C, Wickert J, Igarashi K, Hocke K (2002) Radio holographic method for the study of the ionosphere, atmosphere and terrestrial surface using GPS occultation signals. GPS Solutions (No. 6): 101–108.CrossRefGoogle Scholar
  12. Steiner AK, Kirchengast G, and Landreiter HP (1999) Inversion, error analysis, and validation of GPS/MET occultation data. Ann Geophys 17: 122–138.CrossRefGoogle Scholar
  13. Vorob'ev VV, Gurvich AS, Kan V, Sokolovskiy SV, Fedorova OV, and Shmakov AV (1999) Structure of the Ionosphere from the Radio-Occultation GPS-“Microlab-1’ Satellite Data: Preliminary Results. Earth Observations and Remote Sensing 15: 609–622.Google Scholar
  14. Wickert J et al. (2004) The radio occultation experiment aboard CHAMP: Operational data analysis and validation of atmospheric profiles. J Meteorol Soc Japan 82(IB), Special issue ‘Application of GPS Remote Sensing to Meteorology and Related Fields': 381–395.Google Scholar
  15. Wickert J et al. (2001) Atmosphere sounding by GPS radio occultation: First results from CHAMP. Geophys Res Lett 28: 3263–3266.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Alexander Pavelyev
    • 1
  • Jens Wickert
    • 2
    • 4
  • Christoph Reigber
    • 2
    • 4
  • Torsten Schmidt
    • 2
    • 4
  • Yuei-An Liou
    • 3
  • Chen-Young Huang
    • 3
  • Stanislav Matyugov
    • 1
  • Dmitrii Pavelyev
    • 1
  1. 1.Institute of Radio Engineering and Electronics of Russian Academy of Sciences, (IRE RAS), FryazinoMoscow regionRussia
  2. 2.GeoForschungsZentrum PotsdamPotsdamGermany
  3. 3.Department Geodesy and Remote SensingGermany
  4. 4.Center for Space and Remote Sensing ResearchNational Central UniversityJung-LiTaiwan

Personalised recommendations