Earth Gravity Field and Seasonal Variability from CHAMP

  • Christoph Reigber
  • Horst Jochmann
  • Johann Wünsch
  • Svetozar Petrovic
  • Peter Schwintzer
  • Franz Barthelmes
  • Karl-Hans Neumayer
  • Rolf König
  • Christoph Förste
  • Georges Balmino
  • Richard Biancale
  • Jean-Michel Lemoine
  • Sylvain Loyer
  • Felix Perosanz

Summary

GPS-CHAMP satellite-to-satellite and accelerometry data covering 2.5 years of the CHAMP mission period were exploited to generate the global gravity field model EIGEN-3p revealing considerable improvements in both accuracy and resolution with respect to the previous model EIGEN-2. For the year 2001, CHAMP and satellite laser ranging data of four satellites were combined to recover largest scale monthly gravity field variations that are subsequently analyzed for the annually varying constituents. The temporal gravity field variations observed by CHAMP and the SLR satellites are compared in the spectral and spatial domain with geophysically (atmosphere, ocean, hydrology) predicted gravity variations that do not reflect the large observed scattering in the monthly solutions but are of comparable size and distribution on the annual time scale.

Key words

CHAMP satellite gravity mission global gravity field model temporal gravity field variations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheng MK, Gunter B, Ries JC, Chambers DP, Tapley BD (2002) Temporal Variation in the Earth's Gravity Field from SLR and CHAMP GPS Data. in: I.N. Tziavos (ed.), Gravity and Geoid, 3rd Meeting of the International Gravity and geoid Commission (IGGC), Univ. of Thessaloniki, Greece: 424–431.Google Scholar
  2. Hirose N, Fukumori I, Zlotnicki V, Ponte RM (2001) High-frequency barotrophic response to atmospheric disturbances: Sensitivity to forcing, topography, and friction. J Geophys Res 106: 30,987–30,995.CrossRefGoogle Scholar
  3. Kaula W (1966) Theory of Satellite Geodesy. Blaisdale Press, Waltham, Mass.Google Scholar
  4. Milly PCD, Shmakin AB (2002) Global modeling of land water and energy balances. Part I: The land dynamics (LaD) model. Journal of Hydrometeorology 3(3): 283–299.CrossRefGoogle Scholar
  5. Reigber Ch, Schwintzer P, Neumayer K-H, Barthelmes F, König R, Förste Ch, Balmino G, Biancale R, Lemoine J-M, Loyer S, Bruinsma S, Perosanz F, Fayard T (2003a) The CHAMP-only Earth Gravity Field Model EIGEN-2. Adv Space Res 31(8): 1883–1888.CrossRefGoogle Scholar
  6. Reigber Ch, Schmidt R, Flechtner F, König R, Meyer U, Neumayer K-H, Schwintzer P, Zhu SY (2003b) First GFZ GRACE gravity field model EIGEN-GRACE01S. http://op.gfz-potdam.de/grace/results.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Christoph Reigber
    • 1
  • Horst Jochmann
    • 1
  • Johann Wünsch
    • 1
  • Svetozar Petrovic
    • 1
  • Peter Schwintzer
    • 1
  • Franz Barthelmes
    • 1
  • Karl-Hans Neumayer
    • 1
  • Rolf König
    • 1
  • Christoph Förste
    • 1
  • Georges Balmino
    • 2
  • Richard Biancale
    • 2
  • Jean-Michel Lemoine
    • 2
  • Sylvain Loyer
    • 2
  • Felix Perosanz
    • 3
  1. 1.Department 1 ‘Geodesy and Remote Sensing'GeoForschungsZentrum Potsdam (GFZ)PotsdamGermany
  2. 2.CNES/GRGSToulouseFrance
  3. 3.NoveltisRamenvilleFrance

Personalised recommendations