Gravity Model TUM-2Sp Based on the Energy Balance Approach and Kinematic CHAMP Orbits

  • Lóránt Földváry
  • Dražen Švehla
  • Christian Gerlach
  • Martin Wermuth
  • Thomas Gruber
  • Reiner Rummel
  • Markus Rothacher
  • Björn Frommknecht
  • Thomas Peters
  • Peter Steigenberger

Summary

We have used one year of CHAMP data for deriving a gravity field model based on the energy balance approach. In order to avoid the use of any a priori gravity information, purely kinematic orbits have been computed from GPS measurements only. Subsequently velocities have been derived from these kinematic positions by two different methods, namely smoothing splines and Newton- Gregory interpolation. Using the principle of energy conservation, the satellite's positions and velocities are transformed into gravitational potential. CHAMP onboard micro-accelerometry is used to correct for surface forces. For spherical harmonic analysis the so-called direct approach has been implemented using the full normal equation matrix. The model, called TUM2Sp, was found to be a more accurate gravity field than EIGEN-2 model.

Key words

gravity field energy integral kinematic orbit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jekeli C (1999): The determination of gravitational potential differences from satellite-to-satellite tracking. Celestial Mechanics And Dynamical Astronomy 75: 85–101.CrossRefGoogle Scholar
  2. Gerlach C, Földváry L, Švehla D, Gruber T, Wermuth M, Sneeuw N, Frommknecht B, Oberndorfer H, Peters T, Rothacher M, Rummel R, Steigenberger P (2003): A CHAMP-only gravity field model from kinematic orbit using the energy integral. Geophys Res Lett 30: 20, 2037, doi:10.1029/2003GL018025.CrossRefGoogle Scholar
  3. Gruber T (2001): High resolution gravity field modeling with full variance-covariance matrices, J Geodesy 75(9/10): 505–514.CrossRefGoogle Scholar
  4. Kenyon S, Forsberg R (2003): Arctic Gravity Project. Web Site: http://earthinfo.nima.mil/GandG/agp.Google Scholar
  5. Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998): The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96; NASA Technical Paper NASA/TP-1998-206861, Greenbelt, Maryland, USA.Google Scholar
  6. Reigber C, Schwintzer P, Lühr H (1999): The CHAMP geopotential mission. In: Proceedings of the 2nd Joint Meeting of the International Gravity and the International Geoid Commission (ed. Marson I, Sünkel H), Trieste 7–12 September, 1998. Boll Geofis Teor Appli 40(3–4): 285–289.Google Scholar
  7. Reigber C, Schwintzer P, Neumayer KH, Barthelmes F, König R, Förste C, Balmino G, Biancale R, Lemoine JL, Loyer S, Bruinsma S, Perosanz F, Fayard T (2003): The CHAMP-only EIGEN-2 earth gravity field model, Adv Space Res 31(8): 1883–1888.CrossRefGoogle Scholar
  8. Reigber C, Schmidt R, Flechtner F, König R, Meyer U, Neumayer KH, Schwintzer P, Zhu SY (2003): First EIGEN gravity field model based on GRACE mission data only, in preparation for J Geodyn.Google Scholar
  9. Švehla D, Rothacher M (2003a): Kinematic and reduced-dynamic precise orbit determination of low earth orbiters, Adv Geosciences 1: 47–56.Google Scholar
  10. Švehla D, Rothacher M (2003b): Kinematic precise orbit determination for gravity field determination, submitted to the Proceedings of the IUGG General Assembly 2003, June 30 July 11 2003, Sapporo, Japan, Springer Verlag, IAG 126.Google Scholar
  11. Visser PNAM, Sneeuw N, Gerlach C (2003): Energy integral method for gravity field determination from satellite orbit coordinates. J Geodesy 77: 207–216.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Lóránt Földváry
    • 1
  • Dražen Švehla
    • 1
  • Christian Gerlach
    • 1
  • Martin Wermuth
    • 1
  • Thomas Gruber
    • 1
  • Reiner Rummel
    • 1
  • Markus Rothacher
    • 1
  • Björn Frommknecht
    • 1
  • Thomas Peters
    • 1
  • Peter Steigenberger
    • 1
  1. 1.Institut für Astronomische und Physikalische GeodäsieTechnische Universität MünchenMünchen

Personalised recommendations