The Coronavirus Replicase

  • J. Ziebuhr
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 287)


Coronavirus genome replication and transcription take place at cytoplasmic membranes and involve coordinated processes of both continuous and discontinuous RNA synthesis that are mediated by the viral replicase, a huge protein complex encoded by the 20-kb replicase gene. The replicase complex is believed to be comprised of up to 16 viral subunits and a number of cellular proteins. Besides RNA-dependent RNA polymerase, RNA helicase, and protease activities, which are common to RNA viruses, the coronavirus replicase was recently predicted to employ a variety of RNA processing enzymes that are not (or extremely rarely) found in other RNA viruses and include putative sequence-specific endoribonuclease, 3′-to-5′ exoribonuclease, 2′-O-ribose methyltransferase, ADP ribose 1′-phosphatase and, in a subset of group 2 coronaviruses, cyclic phosphodiesterase activities. This chapter reviews (1) the organization of the coronavirus replicase gene, (2) the proteolytic processing of the replicase by viral proteases, (3) the available functional and structural information on individual subunits of the replicase, such as proteases, RNA helicase, and the RNA-dependent RNA polymerase, and (4) the subcellular localization of coronavirus proteins involved in RNA synthesis. Although many molecular details of the coronavirus life cycle remain to be investigated, the available information suggests that these viruses and their distant nidovirus relatives employ a unique collection of enzymatic activities and other protein functions to synthesize a set of 5′-leader-containing subgenomic mRNAs and to replicate the largest RNA virus genomes currently known.


Severe Acute Respiratory Syndrome Porcine Epidemic Diarrhea Virus Infectious Bronchitis Virus Mouse Hepatitis Virus Severe Acute Respiratory Syndrome Coronavirus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allaire M, Chernaia MM, Malcolm BA, James MN (1994) Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases. Nature 369:72–76CrossRefPubMedGoogle Scholar
  2. Almazán F, González JM, Pénzes Z, Izeta A, Calvo E, Plana-Durán J, Enjuanes L (2000) Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci USA 97:5516–5521CrossRefPubMedGoogle Scholar
  3. Anand K, Palm GJ, Mesters JR, Siddell SG, Ziebuhr J, Hilgenfeld R (2002) Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. EMBO J 21:3213–3224CrossRefPubMedGoogle Scholar
  4. Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R (2003) Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 300:1763–1767CrossRefPubMedGoogle Scholar
  5. Baker SC, Shieh CK, Soe LH, Chang MF, Vannier DM, Lai MM (1989) Identification of a domain required for autoproteolytic cleavage of murine coronavirus gene A polyprotein. J Virol 63:3693–3699Google Scholar
  6. Baker SC, Yokomori K, Dong S, Carlisle R, Gorbalenya AE, Koonin EV, Lai MM (1993) Identification of the catalytic sites of a papain-like cysteine proteinase of murine coronavirus. J Virol 67:6056–6063Google Scholar
  7. Baric RS, Nelson GW, Fleming JO, Deans RJ, Keck JG, Casteel N, Stohlman SA (1988) Interactions between coronavirus nucleocapsid protein and viral RNAs: implications for viral transcription. J Virol 62:4280–4287PubMedGoogle Scholar
  8. Barrette-Ng IH, Ng KK, Mark BL, Van Aken D, Cherney MM, Garen C, Kolodenko Y, Gorbalenya AE, Snijder EJ, James MN (2002) Structure of arterivirus nsp4. The smallest chymotrypsin-like proteinase with an alpha/beta C-terminal extension and alternate conformations of the oxyanion hole. J Biol Chem 277:39960–39966CrossRefPubMedGoogle Scholar
  9. Bautista EM, Faaberg KS, Mickelson D, McGruder ED (2002) Functional properties of the predicted helicase of porcine reproductive and respiratory syndrome virus. Virology 298:258–270CrossRefPubMedGoogle Scholar
  10. Bergmann EM, Mosimann SC, Chernaia MM, Malcolm BA, James MN (1997) The refined crystal structure of the 3C gene product from hepatitis A virus: specific proteinase activity and RNA recognition. J Virol 71:2436–2448PubMedGoogle Scholar
  11. Bi W, Piñon JD, Hughes S, Bonilla PJ, Holmes KV, Weiss SR, Leibowitz JL (1998) Localization of mouse hepatitis virus open reading frame 1A derived proteins. J Neurovirol 4:594–605PubMedGoogle Scholar
  12. Blom N, Hansen J, Blaas D, Brunak S (1996) Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks. Protein Sci 5:2203–2216PubMedGoogle Scholar
  13. Bonilla PJ, Gorbalenya AE, Weiss SR (1994) Mouse hepatitis virus strain A59 RNA polymerase gene ORF 1a: heterogeneity among MHV strains. Virology 198:736–740CrossRefPubMedGoogle Scholar
  14. Bonilla PJ, Hughes SA, Weiss SR (1997) Characterization of a second cleavage site and demonstration of activity in trans by the papain-like proteinase of the murine coronavirus mouse hepatitis virus strain A59. J Virol 71:900–909PubMedGoogle Scholar
  15. Bost AG, Carnahan RH, Lu XT, Denison MR (2000) Four proteins processed from the replicase gene polyprotein of mouse hepatitis virus colocalize in the cell periphery and adjacent to sites of virion assembly. J Virol 74:3379–3387CrossRefPubMedGoogle Scholar
  16. Bost AG, Prentice E, Denison MR (2001) Mouse hepatitis virus replicase protein complexes are translocated to sites of M protein accumulation in the ERGIC at late times of infection. Virology 285:21–29CrossRefPubMedGoogle Scholar
  17. Boursnell ME, Brown TD, Foulds IJ, Green PF, Tomley FM, Binns MM (1987) Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J Gen Virol 68:57–77PubMedGoogle Scholar
  18. Bredenbeek PJ, Pachuk CJ, Noten AF, Charite J, Luytjes W, Weiss SR, Spaan WJ (1990) The primary structure and expression of the second open reading frame of the polymerase gene of the coronavirus MHV-A59; a highly conserved polymerase is expressed by an efficient ribosomal frameshifting mechanism. Nucleic Acids Res 18:1825–1832PubMedGoogle Scholar
  19. Brierley I, Boursnell ME, Binns MM, Bilimoria B, Blok VC, Brown TD, Inglis SC (1987) An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J 6:3779–3785PubMedGoogle Scholar
  20. Brierley I, Digard P, Inglis SC (1989) Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 57:537–547CrossRefPubMedGoogle Scholar
  21. Brockway SM, Clay CT, Lu XT, Denison MR (2003) Characterization of the expression, intracellular localization, and replication complex association of the putative mouse hepatitis virus RNA-dependent RNA polymerase. J Virol 77:10515–10527CrossRefPubMedGoogle Scholar
  22. Buck KW (1996) Comparison of the replication of positive-stranded RNA viruses of plants and animals. Adv Virus Res 47:159–251PubMedGoogle Scholar
  23. Bügl H, Fauman EB, Staker BL, Zheng F, Kushner SR, Saper MA, Bardwell JC, Jakob U (2000) RNA methylation under heat shock control. Mol Cell 6:349–360CrossRefPubMedGoogle Scholar
  24. Burns CC, Lawson MA, Semler BL, Ehrenfeld E (1989) Effects of mutations in poliovirus 3Dpol on RNA polymerase activity and on polyprotein cleavage. J Virol 63:4866–4874PubMedGoogle Scholar
  25. Casais R, Thiel V, Siddell SG, Cavanagh D, Britton P (2001) Reverse genetics system for the avian coronavirus infectious bronchitis virus. J Virol 75:12359–12369CrossRefPubMedGoogle Scholar
  26. Cavanagh D (1997) Nidovirales: a new order comprising Coronaviridae and Arteriviridae. Arch Virol 142:629–633PubMedGoogle Scholar
  27. Cho MW, Teterina N, Egger D, Bienz K, Ehrenfeld E (1994) Membrane rearrangement and vesicle induction by recombinant poliovirus 2C and 2BC in human cells. Virology 202:129–145CrossRefPubMedGoogle Scholar
  28. Chouljenko VN, Lin XQ, Storz J, Kousoulas KG, Gorbalenya AE (2001) Comparison of genomic and predicted amino acid sequences of respiratory and enteric bovine coronaviruses isolated from the same animal with fatal shipping pneumonia. J Gen Virol 82:2927–2933PubMedGoogle Scholar
  29. Compton SR, Rogers DB, Holmes KV, Fertsch D, Remenick J, McGowan JJ (1987) In vitro replication of mouse hepatitis virus strain A59. J Virol 61:1814–1820Google Scholar
  30. Cowley JA, Dimmock CM, Spann KM, Walker PJ (2000) Gill-associated virus of Penaeus monodon prawns: an invertebrate virus with ORF1a and ORF1b genes related to arteri-and coronaviruses. J Gen Virol 81:1473–1484PubMedGoogle Scholar
  31. Culver GM, Consaul SA, Tycowski KT, Filipowicz W, Phizicky EM (1994) tRNA splicing in yeast and wheat germ. A cyclic phosphodiesterase implicated in the metabolism of ADP-ribose 1″,2″-cyclic phosphate. J Biol Chem 269:24928–24934PubMedGoogle Scholar
  32. Datta U, Dasgupta A (1994) Expression and subcellular localization of poliovirus VPg-precursor protein 3AB in eukaryotic cells: evidence for glycosylation in vitro. J Virol 68:4468–4477PubMedGoogle Scholar
  33. De Graaff M, Coscoy L, Jaspars EM (1993) Localization and biochemical characterization of alfalfa mosaic virus replication complexes. Virology 194:878–881CrossRefPubMedGoogle Scholar
  34. de Vries AAF, Horzinek MC, Rottier PJM, de Groot RJ (1997) The genome organization of the Nidovirales: similarities and differences between arteri-, toro-, and coronaviruses. Sem Virol 8:33–47CrossRefGoogle Scholar
  35. den Boon JA, Snijder EJ, Chirnside ED, de Vries AA, Horzinek MC, Spaan WJ (1991) Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily. J Virol 65:2910–2920PubMedGoogle Scholar
  36. Denison MR, Hughes SA, Weiss SR (1995) Identification and characterization of a 65-kDa protein processed from the gene 1 polyprotein of the murine coronavirus MHV-A59. Virology 207:316–320CrossRefPubMedGoogle Scholar
  37. Denison MR, Spaan WJ, van der Meer Y, Gibson CA, Sims AC, Prentice E, Lu XT (1999) The putative helicase of the coronavirus mouse hepatitis virus is processed from the replicase gene polyprotein and localizes in complexes that are active in viral RNA synthesis. J Virol 73:6862–6871PubMedGoogle Scholar
  38. Dong S, Baker SC (1994) Determinants of the p28 cleavage site recognized by the first papain-like cysteine proteinase of murine coronavirus. Virology 204:541–549CrossRefPubMedGoogle Scholar
  39. Dougherty WG, Semler BL (1993) Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiol Rev 57:781–822PubMedGoogle Scholar
  40. Egger D, Wölk B, Gosert R, Bianchi L, Blum HE, Moradpour D, Bienz K (2002) Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J Virol 76:5974–5984CrossRefPubMedGoogle Scholar
  41. Eleouet JF, Rasschaert D, Lambert P, Levy L, Vende P, Laude H (1995) Complete sequence (20 kilobases) of the polyprotein-encoding gene 1 of transmissible gastroenteritis virus. Virology 206:817–822CrossRefPubMedGoogle Scholar
  42. Fan K, Wei P, Feng Q, Chen S, Huang C, Ma L, Lai B, Pei J, Liu Y, Chen J, Lai L (2003) Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase. J Biol Chem 279:1637–1642CrossRefPubMedGoogle Scholar
  43. Filipowicz W, Pogacic V (2002) Biogenesis of small nucleolar ribonucleoproteins. Curr Opin Cell Biol 14:319–327CrossRefPubMedGoogle Scholar
  44. Froshauer S, Kartenbeck J, Helenius A (1988) Alphavirus RNA replicase is located on the cytoplasmic surface of endosomes and lysosomes. J Cell Biol 107:2075–2086CrossRefPubMedGoogle Scholar
  45. Gallagher TM (1996) Murine coronavirus membrane fusion is blocked by modification of thiols buried within the spike protein. J Virol 70:4683–4690PubMedGoogle Scholar
  46. Goldbach R (1987) Genome similarities between plant and animal RNA viruses. Microbiol Sci 4:197–202PubMedGoogle Scholar
  47. Gorbalenya AE, Donchenko AP, Blinov VM, Koonin EV (1989a) Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold. FEBS Lett 243:103–114CrossRefPubMedGoogle Scholar
  48. Gorbalenya AE, Koonin EV, Donchenko AP, Blinov VM (1989b) Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res 17:4713–4730PubMedGoogle Scholar
  49. Gorbalenya AE, Koonin EV, Donchenko AP, Blinov VM (1989c) Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis. Nucleic Acids Res 17:4847–4861PubMedGoogle Scholar
  50. Gorbalenya AE, Koonin EV, Lai MM (1991) Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi-and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha-and coronaviruses. FEBS Lett 288:201–205CrossRefPubMedGoogle Scholar
  51. Gorbalenya AE, Koonin EV (1993) Helicases: amino acid sequence comparisons and structure-function relationships. Curr Opin Struct Biol 3:419–429CrossRefGoogle Scholar
  52. Gorbalenya AE, Snijder EJ (1996) Viral cysteine proteinases. Persp Drug Discov Des 6:64–86CrossRefGoogle Scholar
  53. Gorbalenya AE (2001) Big nidovirus genome. When count and order of domains matter. Adv Exp Med Biol 494:1–17Google Scholar
  54. Gosert R, Kanjanahaluethai A, Egger D, Bienz K, Baker SC (2002) RNA replication of mouse hepatitis virus takes place at double-membrane vesicles. J Virol 76:3697–3708CrossRefPubMedGoogle Scholar
  55. Grötzinger C, Heusipp G, Ziebuhr J, Harms U, Süss J, Siddell SG (1996) Characterization of a 105-kDa polypeptide encoded in gene 1 of the human coronavirus HCV 229E. Virology 222:227–235CrossRefPubMedGoogle Scholar
  56. Guarné A, Tormo J, Kirchweger R, Pfistermueller D, Fita I, Skern T (1998) Structure of the foot-and-mouth disease virus leader protease: a papain-like fold adapted for self-processing and eIF4G recognition. EMBO J 17:7469–7479CrossRefPubMedGoogle Scholar
  57. Guarné A, Hampoelz B, Glaser W, Carpena X, Tormo J, Fita I, Skern T (2000) Structural and biochemical features distinguish the foot-and-mouth disease virus leader proteinase from other papain-like enzymes. J Mol Biol 302:1227–240CrossRefPubMedGoogle Scholar
  58. Hansen JL, Long AM, Schultz SC (1997) Structure of the RNA-dependent RNA polymerase of poliovirus. Structure 5:1109–1122CrossRefPubMedGoogle Scholar
  59. Hegyi A, Friebe A, Gorbalenya AE, Ziebuhr J (2002) Mutational analysis of the active centre of coronavirus 3C-like proteases. J Gen Virol 83:581–593PubMedGoogle Scholar
  60. Hegyi A, Ziebuhr J (2002) Conservation of substrate specificities among coronavirus main proteases. J Gen Virol 83:595–599PubMedGoogle Scholar
  61. Herold J, Raabe T, Schelle-Prinz B, Siddell SG (1993) Nucleotide sequence of the human coronavirus 229E RNA polymerase locus. Virology 195:680–691CrossRefPubMedGoogle Scholar
  62. Herold J, Siddell SG (1993) An ‘elaborated’ pseudoknot is required for high frequency frameshifting during translation of HCV 229E polymerase mRNA. Nucleic Acids Res 21:5838–5842PubMedGoogle Scholar
  63. Herold J, Gorbalenya AE, Thiel V, Schelle B, Siddell SG (1998) Proteolytic processing at the amino terminus of human coronavirus 229E gene 1-encoded polyproteins: identification of a papain-like proteinase and its substrate. J Virol 72:910–918PubMedGoogle Scholar
  64. Herold J, Siddell SG, Gorbalenya AE (1999) A human RNA viral cysteine proteinase that depends upon a unique Zn2+-binding finger connecting the two domains of a papain-like fold. J Biol Chem 274:14918–14925CrossRefPubMedGoogle Scholar
  65. Heusipp G, Grötzinger C, Herold J, Siddell SG, Ziebuhr J (1997a) Identification and subcellular localization of a 41 kDa, polyprotein 1ab processing product in human coronavirus 229E-infected cells. J Gen Virol 78:2789–2794PubMedGoogle Scholar
  66. Heusipp G, Harms U, Siddell SG, Ziebuhr J (1997b) Identification of an ATPase activity associated with a 71-kilodalton polypeptide encoded in gene 1 of the human coronavirus 229E. J Virol 71:5631–5634PubMedGoogle Scholar
  67. Hughes SA, Bonilla PJ, Weiss SR (1995) Identification of the murine coronavirus p28 cleavage site. J Virol 69:809–813PubMedGoogle Scholar
  68. Ivanov KA, Thiel V, Dobbe JC, van der Meer Y, Snijder EJ, Ziebuhr J (2004) Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J Virol 78:5619–5632CrossRefPubMedGoogle Scholar
  69. Ivanov KA, Ziebuhr J (2004) Human coronavirus nonstructural protein 13: characterization of duplex-unwinding, (deoxy)nucleoside triphosphatase, and RNA 50-triphosphatase activities. J Virol 78:7833–7838CrossRefPubMedGoogle Scholar
  70. Kadaré G, Haenni AL (1997) Virus-encoded RNA helicases. J Virol 71:2583–2590PubMedGoogle Scholar
  71. Kanjanahaluethai A, Baker SC (2000) Identification of mouse hepatitis virus papain-like proteinase 2 activity. J Virol 74:7911–7921CrossRefPubMedGoogle Scholar
  72. Kanjanahaluethai A, Jukneliene D, Baker SC (2003) Identification of the murine coronavirus MP1 cleavage site recognized by papain-like proteinase 2. J Virol 77:7376–7382CrossRefPubMedGoogle Scholar
  73. Khan AR, Khazanovich-Bernstein N, Bergmann EM, James MN (1999) Structural aspects of activation pathways of aspartic protease zymogens and viral 3C protease precursors. Proc Natl Acad Sci USA 96:10968–10975CrossRefPubMedGoogle Scholar
  74. Kim JC, Spence RA, Currier PF, Lu X, Denison MR (1995) Coronavirus protein processing and RNA synthesis is inhibited by the cysteine proteinase inhibitor E64d. Virology 208:1–8CrossRefPubMedGoogle Scholar
  75. Kiss T (2001) Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J 20:3617–3622CrossRefPubMedGoogle Scholar
  76. Kocherhans R, Bridgen A, Ackermann M, Tobler K (2001) Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence. Virus Genes 23:137–144CrossRefPubMedGoogle Scholar
  77. Koonin EV (1991) The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J Gen Virol 72:2197–2206PubMedGoogle Scholar
  78. Koonin EV, Dolja VV (1993) Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28:375–430PubMedGoogle Scholar
  79. Kräusslich HG, Wimmer E (1988) Viral proteinases. Annu Rev Biochem 57:701–754CrossRefPubMedGoogle Scholar
  80. Kujala P, Ikäheimonen A, Ehsani N, Vihinen H, Auvinen P, Kääriäinen L (2001) Biogenesis of the Semliki Forest virus RNA replication complex. J Virol 75:3873–3884CrossRefPubMedGoogle Scholar
  81. Kwong AD, Kim JL, Lin C (2000) Structure and function of hepatitis C virus NS3 helicase. Curr Top Microbiol Immunol 242:171–196PubMedGoogle Scholar
  82. Laakkonen P, Ahola T, Kääriäinen L (1996) The effects of palmitoylation on membrane association of Semliki forest virus RNA capping enzyme. J Biol Chem 271:28567–28571CrossRefPubMedGoogle Scholar
  83. Lai MM, Patton CD, Baric RS, Stohlman SA (1983) Presence of leader sequences in the mRNA of mouse hepatitis virus. J Virol 46:1027–1033PubMedGoogle Scholar
  84. Lai MM, Cavanagh D (1997) The molecular biology of coronaviruses. Adv Virus Res 48:1–10CrossRefPubMedGoogle Scholar
  85. Laneve P, Altieri F, Fiori ME, Scaloni A, Bozzoni I, Caffarelli E (2003) Purification, cloning, and characterization of XendoU, a novel endoribonuclease involved in processing of intron-encoded small nucleolar RNAs in Xenopus laevis. J Biol Chem 278:13026–13032CrossRefPubMedGoogle Scholar
  86. Lee HJ, Shieh CK, Gorbalenya AE, Koonin EV, La Monica N, Tuler J, Bagdzhadzhyan A, Lai MM (1991) The complete sequence (22 kilobases) of murine coronavirus gene 1 encoding the putative proteases and RNA polymerase. Virology 180:567–582CrossRefPubMedGoogle Scholar
  87. Lemm JA, Rümenapf T, Strauss EG, Strauss JH, Rice CM (1994) Polypeptide requirements for assembly of functional Sindbis virus replication complexes: a model for the temporal regulation of minus-and plus-strand RNA synthesis. EMBO J 13:2925–2934PubMedGoogle Scholar
  88. Lim KP, Liu DX (1998) Characterization of the two overlapping papain-like proteinase domains encoded in gene 1 of the coronavirus infectious bronchitis virus and determination of the C-terminal cleavage site of an 87-kDa protein. Virology 245:303–312CrossRefPubMedGoogle Scholar
  89. Lim KP, Ng LF, Liu DX (2000) Identification of a novel cleavage activity of the first papain-like proteinase domain encoded by open reading frame 1a of the coronavirus avian infectious bronchitis virus and characterization of the cleavage products. J Virol 74:1674–1685CrossRefPubMedGoogle Scholar
  90. Liu C, Xu HY, Liu DX (2001) Induction of caspase-dependent apoptosis in cultured cells by the avian coronavirus infectious bronchitis virus. J Virol 75:6402–6409CrossRefPubMedGoogle Scholar
  91. Liu DX, Brown TD (1995) Characterisation and mutational analysis of an ORF 1a-encoding proteinase domain responsible for proteolytic processing of the infectious bronchitis virus 1a/1b polyprotein. Virology 209:420–427CrossRefPubMedGoogle Scholar
  92. Lu X, Lu Y, Denison MR (1996) Intracellular and in vitro-translated 27-kDa proteins contain the 3C-like proteinase activity of the coronavirus MHV-A59. Virology 222:375–382CrossRefPubMedGoogle Scholar
  93. Lu Y, Denison MR (1997) Determinants of mouse hepatitis virus 3C-like proteinase activity. Virology 230:335–342CrossRefPubMedGoogle Scholar
  94. Mackenzie JM, Jones MK, Westaway EG (1999) Markers for trans-Golgi membranes and the intermediate compartment localize to induced membranes with distinct replication functions in flavivirus-infected cells. J Virol 73:9555–9567PubMedGoogle Scholar
  95. Marra MA, Jones SJ, Astell CR, Holt RA, Brooks-Wilson A, Butterfield YS, Khattra J, Asano JK, Barber SA, Chan SY, Cloutier A, Coughlin SM, Freeman D, Girn N, Griffith OL, Leach SR, Mayo M, McDonald H, Montgomery SB, Pandoh PK, Petrescu AS, Robertson AG, Schein JE, Siddiqui A, Smailus DE, Stott JM, Yang GS, Plummer F, Andonov A, Artsob H, Bastien N, Bernard K, Booth TF, Bowness D, Czub M, Drebot M, Fernando L, Flick R, Garbutt M, Gray M, Grolla A, Jones S, Feldmann H, Meyers A, Kabani A, Li Y, Normand S, Stroher U, Tipples GA, Tyler S, Vogrig R, Ward D, Watson B, Brunham RC, Krajden M, Petric M, Skowronski DM, Upton C, Roper RL (2003) The genome sequence of the SARS-associated coronavirus. Science 300:1399–1404CrossRefPubMedGoogle Scholar
  96. Martzen MR, McCraith SM, Spinelli SL, Torres FM, Fields S, Grayhack EJ, Phizicky EM (1999) A biochemical genomics approach for identifying genes by the activity of their products. Science 286:1153–1155CrossRefPubMedGoogle Scholar
  97. Matthews DA, Smith WW, Ferre RA, Condon B, Budahazi G, Sisson W, Villafranca JE, Janson CA, McElroy HE, Gribskov CL, et al. (1994) Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell 77:761–771CrossRefPubMedGoogle Scholar
  98. Miller DJ, Schwartz MD, Ahlquist P (2001) Flock house virus RNA replicates on outer mitochondrial membranes in Drosophila cells. J Virol 75:11664–11676CrossRefPubMedGoogle Scholar
  99. Mills DR, Priano C, DiMauro P, Binderow BD (1989) Q beta replicase: mapping the functional domains of an RNA-dependent RNA polymerase. J Mol Biol 205:751–764CrossRefPubMedGoogle Scholar
  100. Mosimann SC, Cherney MM, Sia S, Plotch S, James MN (1997) Refined X-ray crystallographic structure of the poliovirus 3C gene product. J Mol Biol 273:1032–1047CrossRefPubMedGoogle Scholar
  101. Nasr F, Filipowicz W (2000) Characterization of the Saccharomyces cerevisiae cyclic nucleotide phosphodiesterase involved in the metabolism of ADP-ribose 1″,2″-cyclic phosphate. Nucleic Acids Res 28:1676–1683CrossRefPubMedGoogle Scholar
  102. Ng LF, Liu DX (2000) Further characterization of the coronavirus infectious bronchitis virus 3C-like proteinase and determination of a new cleavage site. Virology 272:27–39CrossRefPubMedGoogle Scholar
  103. Ng LF, Liu DX (2002) Membrane association and dimerization of a cysteine-rich, 16-kilodalton polypeptide released from the C-terminal region of the coronavirus infectious bronchitis virus 1a polyprotein. J Virol 76:6257–6267CrossRefPubMedGoogle Scholar
  104. Pang PS, Jankowsky E, Planet PJ, Pyle AM (2002) The hepatitis C viral NS3 protein is a processive DNA helicase with cofactor enhanced RNA unwinding. EMBO J 21:1168–1176CrossRefPubMedGoogle Scholar
  105. Pedersen KW, van der Meer Y, Roos N, Snijder EJ (1999) Open reading frame 1a-encoded subunits of the arterivirus replicase induce endoplasmic reticulum-derived double-membrane vesicles which carry the viral replication complex. J Virol 73:2016–2026PubMedGoogle Scholar
  106. Penzes Z, González JM, Calvo E, Izeta A, Smerdou C, Mendez A, Sánchez CM, Sola I., Almazán F, Enjuanes L (2001) Complete genome sequence of transmissible gastroenteritis coronavirus PUR46-MAD clone and evolution of the Purdue virus cluster. Virus Genes 23:105–118CrossRefPubMedGoogle Scholar
  107. Peränen J, Kääriäinen L (1991) Biogenesis of type I cytopathic vacuoles in Semliki Forest virus-infected BHK cells. J Virol 65:1623–1627PubMedGoogle Scholar
  108. Peränen J, Laakkonen P, Hyvönen M, Kääriäinen L (1995) The alphavirus replicase protein nsP1 is membrane-associated and has affinity to endocytic organelles. Virology 208:610–620CrossRefPubMedGoogle Scholar
  109. Piñon JD, Mayreddy RR, Turner JD, Khan FS, Bonilla PJ, Weiss SR (1997) Efficient autoproteolytic processing of the MHV-A59 3C-like proteinase from the flanking hydrophobic domains requires membranes. Virology 230:309–322CrossRefPubMedGoogle Scholar
  110. Piñon JD, Teng H, Weiss SR (1999) Further requirements for cleavage by the murine coronavirus 3C-like proteinase: identification of a cleavage site within ORF1b. Virology 263:471–484CrossRefPubMedGoogle Scholar
  111. Plotch SJ, Palant O, Gluzman Y (1989) Purification and properties of poliovirus RNA polymerase expressed in Escherichia coli. J Virol 63:216–225PubMedGoogle Scholar
  112. Restrepo-Hartwig M, Ahlquist P (1999) Brome mosaic virus RNA replication proteins 1a and 2a colocalize and 1a independently localizes on the yeast endoplasmic reticulum. J Virol 73:10303–10309PubMedGoogle Scholar
  113. Restrepo-Hartwig MA, Ahlquist P (1996) Brome mosaic virus helicase-and polymerase-like proteins colocalize on the endoplasmic reticulum at sites of viral RNA synthesis. J Virol 70:8908–8916PubMedGoogle Scholar
  114. Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Penaranda S, Bankamp B, Maher K, Chen MH, Tong S, Tamin A, Lowe L, Frace M, DeRisi JL, Chen Q, Wang D, Erdman DD, Peret TC, Burns C, Ksiazek TG, Rollin PE, Sanchez A, Liffick S, Holloway B, Limor J, McCaustland K, Olsen-Rasmussen M, Fouchier R, Gunther S, Osterhaus AD, Drosten C, Pallansch MA, Anderson LJ, Bellini WJ (2003) Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300:1394–1399CrossRefPubMedGoogle Scholar
  115. Ruan YJ, Wei CL, Ee AL, Vega VB, Thoreau H, Su ST, Chia JM, Ng P, Chiu KP, Lim L, Zhang T, Peng CK, Lin EO, Lee NM, Yee SL, Ng LF, Chee RE, Stanton LW, Long PM, Liu ET (2003) Comparative full-length genome sequence analysis of 14 SARS coronavirus isolates and common mutations associated with putative origins of infection. Lancet 361:1779–1785CrossRefPubMedGoogle Scholar
  116. Russo M, Di Franco A, Martelli GP (1983) The fine structure of Cymbidium ringspot virus infections in host tissues. III. Role of peroxisomes in the genesis of multivesicular bodies. J Ultrastruct Res 82:52–63CrossRefPubMedGoogle Scholar
  117. Ryan MD, Flint M (1997) Virus-encoded proteinases of the picornavirus supergroup. J Gen Virol 78:699–723PubMedGoogle Scholar
  118. Sawicki D, Wang T, Sawicki S (2001) The RNA structures engaged in replication and transcription of the A59 strain of mouse hepatitis virus. J Gen Virol 82:385–396PubMedGoogle Scholar
  119. Sawicki SG, Sawicki DL (1990) Coronavirus transcription: subgenomic mouse hepatitis virus replicative intermediates function in RNA synthesis. J Virol 64:1050–1056PubMedGoogle Scholar
  120. Schaad MC, Baric RS (1994) Genetics of mouse hepatitis virus transcription: evidence that subgenomic negative strands are functional templates. J Virol 68:8169–8179PubMedGoogle Scholar
  121. Schaad MC, Jensen PE, Carrington JC (1997) Formation of plant RNA virus replication complexes on membranes: role of an endoplasmic reticulum-targeted viral protein. EMBO J 16:4049–4059CrossRefPubMedGoogle Scholar
  122. Schiller JJ, Kanjanahaluethai A, Baker SC (1998) Processing of the coronavirus MHV-JHM polymerase polyprotein: identification of precursors and proteolytic products spanning 400 kilodaltons of ORF1a. Virology 242:288–302CrossRefPubMedGoogle Scholar
  123. Schlegel A, Giddings TH, Jr., Ladinsky MS, Kirkegaard K (1996) Cellular origin and ultrastructure of membranes induced during poliovirus infection. J Virol 70:6576–6588PubMedGoogle Scholar
  124. Schmidt-Mende J, Bieck E, Hügle T, Penin F, Rice CM, Blum HE, Moradpour D (2001) Determinants for membrane association of the hepatitis C virus RNA-dependent RNA polymerase. J Biol Chem 276:44052–44063CrossRefPubMedGoogle Scholar
  125. Schwartz M, Chen J, Janda M, Sullivan M, den Boon J, Ahlquist P (2002) A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids. Mol Cell 9:505–514CrossRefPubMedGoogle Scholar
  126. Seipelt J, Guarne A, Bergmann E, James M, Sommergruber W, Fita I, Skern T (1999) The structures of picornaviral proteinases. Virus Res 62:159–168CrossRefPubMedGoogle Scholar
  127. Sethna PB, Hung SL, Brian DA (1989) Coronavirus subgenomic minus-strand RNAs and the potential for mRNA replicons. Proc Natl Acad Sci USA 86:5626–5630PubMedGoogle Scholar
  128. Sethna PB, Brian DA (1997) Coronavirus genomic and subgenomic minus-strand RNAs copartition in membrane-protected replication complexes. J Virol 71:7744–7749PubMedGoogle Scholar
  129. Seybert A, Hegyi A, Siddell SG, Ziebuhr J (2000a) The human coronavirus 229E superfamily 1 helicase has RNA and DNA duplex-unwinding activities with 5′-to-3′ polarity. RNA 6:1056–1068CrossRefPubMedGoogle Scholar
  130. Seybert A, van Dinten LC, Snijder EJ, Ziebuhr J (2000b) Biochemical characterization of the equine arteritis virus helicase suggests a close functional relationship between arterivirus and coronavirus helicases. J Virol 74:9586–9593CrossRefPubMedGoogle Scholar
  131. Seybert A, Ziebuhr J (2001) Guanosine triphosphatase activity of the human coronavirus helicase. Adv Exp Med Biol 494:255–260PubMedGoogle Scholar
  132. Shi ST, Schiller JJ, Kanjanahaluethai A, Baker SC, Oh JW, Lai MM (1999) Colocalization and membrane association of murine hepatitis virus gene 1 products and de novo-synthesized viral RNA in infected cells. J Virol 73:5957–5969PubMedGoogle Scholar
  133. Siddell S, Sawicki D, Meyer Y, Thiel V, Sawicki S (2001) Identification of the mutations responsible for the phenotype of three MHV RNA-negative ts mutants. Adv Exp Med Biol 494:453–458PubMedGoogle Scholar
  134. Siddell SG. (1995). The Coronaviridae: an introduction. In “The Coronaviridae” (Siddell SG, ed.), pp. 1–10. Plenum Press, New York.Google Scholar
  135. Sims AC, Ostermann J, Denison MR (2000) Mouse hepatitis virus replicase proteins associate with two distinct populations of intracellular membranes. J Virol 74:5647–5654CrossRefPubMedGoogle Scholar
  136. Snijder EJ, den Boon JA, Bredenbeek PJ, Horzinek MC, Rijnbrand R, Spaan WJ (1990a) The carboxyl-terminal part of the putative Berne virus polymerase is expressed by ribosomal frameshifting and contains sequence motifs which indicate that toro-and coronaviruses are evolutionarily related. Nucleic Acids Res 18:4535–4542PubMedGoogle Scholar
  137. Snijder EJ, Horzinek MC (1993) Toroviruses: replication, evolution and comparison with other members of the coronavirus-like superfamily. J Gen Virol 74:2305–2316PubMedGoogle Scholar
  138. Snijder EJ, Meulenberg JJ (1998) The molecular biology of arteriviruses. J Gen Virol 79:961–979PubMedGoogle Scholar
  139. Snijder EJ, van Tol H, Roos N, Pedersen KW (2001) Non-structural proteins 2 and 3 interact to modify host cell membranes during the formation of the arterivirus replication complex. J Gen Virol 82:985–994PubMedGoogle Scholar
  140. Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, Guan Y, Rozanov M, Spaan WJ, Gorbalenya AE (2003) Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331:991–1004CrossRefPubMedGoogle Scholar
  141. Spaan W, Delius H, Skinner M, Armstrong J, Rottier P, Smeekens S, van der Zeijst BA, Siddell SG (1983) Coronavirus mRNA synthesis involves fusion of non-contiguous sequences. EMBO J 2:1839–1844PubMedGoogle Scholar
  142. Stinchcombe JC, Griffiths GM (1999) Regulated secretion from hemopoietic cells. J Cell Biol 147:1–6CrossRefPubMedGoogle Scholar
  143. Strauss JH, Strauss EG (1988) Evolution of RNA viruses. Annu Rev Microbiol 42:657–683CrossRefPubMedGoogle Scholar
  144. Tanner JA, Watt RM, Chai YB, Lu LY, Lin MC, Peiris JS, Poon LL, Kung HF, Huang JD (2003) The severe acute respiratory syndrome (SARS) coronavirus NTPase/helicase belongs to a distinct class of 5′ to 3′ viral helicases. J Biol Chem 278:39578–39582CrossRefPubMedGoogle Scholar
  145. Teng H, Piñon JD, Weiss SR (1999) Expression of murine coronavirus recombinant papain-like proteinase: efficient cleavage is dependent on the lengths of both the substrate and the proteinase polypeptides. J Virol 73:2658–2666PubMedGoogle Scholar
  146. Teterina NL, Bienz K, Egger D, Gorbalenya AE, Ehrenfeld E (1997) Induction of intracellular membrane rearrangements by HAV proteins 2C and 2BC. Virology 237:66–77CrossRefPubMedGoogle Scholar
  147. Thiel V, Herold J, Schelle B, Siddell SG (2001a) Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus. J Gen Virol 82:1273–1281PubMedGoogle Scholar
  148. Thiel V, Herold J, Schelle B, Siddell SG (2001b) Viral replicase gene products suffice for coronavirus discontinuous transcription. J Virol 75:6676–6681CrossRefPubMedGoogle Scholar
  149. Thiel V, Ivanov KA, Putics A, Hertzig T, Schelle B, Bayer S, Weissbrich B, Snijder EJ, Rabenau H, Doerr HW, Gorbalenya AE, Ziebuhr J (2003) Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol 84:2305–2315CrossRefPubMedGoogle Scholar
  150. Tibbles KW, Brierley I, Cavanagh D, Brown TD (1996) Characterization in vitro of an autocatalytic processing activity associated with the predicted 3C-like proteinase domain of the coronavirus avian infectious bronchitis virus. J Virol 70:1923–1930PubMedGoogle Scholar
  151. Tibbles KW, Cavanagh D, Brown TD (1999) Activity of a purified His-tagged 3C-like proteinase from the coronavirus infectious bronchitis virus. Virus Res. 60:137–145CrossRefPubMedGoogle Scholar
  152. Tijms MA, van Dinten LC, Gorbalenya AE, Snijder EJ (2001) A zinc finger-containing papain-like protease couples subgenomic mRNA synthesis to genome translation in a positive-stranded RNA virus. Proc Natl Acad Sci USA 98:1889–1894CrossRefPubMedGoogle Scholar
  153. van der Meer Y, van Tol H, Krijnse Locker J, Snijder EJ (1998) ORF1a-encoded replicase subunits are involved in the membrane association of the arterivirus replication complex. J Virol 72:6689–6698PubMedGoogle Scholar
  154. van der Meer Y, Snijder EJ, Dobbe JC, Schleich S, Denison MR, Spaan WJ, Krijnse Locker J (1999) Localization of mouse hepatitis virus nonstructural proteins and RNA synthesis indicates a role for late endosomes in viral replication. J Virol 73:7641–7657PubMedGoogle Scholar
  155. van Dinten LC, Rensen S, Gorbalenya AE, Snijder EJ (1999) Proteolytic processing of the open reading frame 1b-encoded part of arterivirus replicase is mediated by nsp4 serine protease and Is essential for virus replication. J Virol 73:2027–2037PubMedGoogle Scholar
  156. van Dinten LC, van Tol H, Gorbalenya AE, Snijder EJ (2000) The predicted metal-binding region of the arterivirus helicase protein is involved in subgenomic mRNA synthesis, genome replication, and virion biogenesis. J Virol 74:5213–5223CrossRefPubMedGoogle Scholar
  157. van Kuppeveld FJ, Galama JM, Zoll J, Melchers WJ (1995) Genetic analysis of a hydrophobic domain of coxsackie B3 virus protein 2B: a moderate degree of hydrophobicity is required for a cis-acting function in viral RNA synthesis. J Virol 69:7782–7790.PubMedGoogle Scholar
  158. Vasiljeva L, Merits A, Golubtsov A, Sizemskaja V, Kaariainen L, Ahola T (2003) Regulation of the sequential processing of Semliki Forest virus replicase polyprotein. J Biol Chem 278:41636–41645CrossRefPubMedGoogle Scholar
  159. Wang T, Sawicki SG (2001) Mouse hepatitis virus minus-strand templates are unstable and turnover during viral replication. Adv Exp Med Biol 494:491–497PubMedGoogle Scholar
  160. Xu HY, Lim KP, Shen S, Liu DX (2001) Further identification and characterization of novel intermediate and mature cleavage products released from the ORF 1b region of the avian coronavirus infectious bronchitis virus 1a/1b polyprotein. Virology 288:212–222CrossRefPubMedGoogle Scholar
  161. Yount B, Curtis KM, Baric RS (2000) Strategy for systematic assembly of large RNA and DNA genomes: transmissible gastroenteritis virus model. J Virol 74:10600–10611CrossRefPubMedGoogle Scholar
  162. Yount B, Denison MR, Weiss SR, Baric RS (2002) Systematic assembly of a full-length infectious cDNA of mouse hepatitis virus strain A59. J Virol 76:11065–11078CrossRefPubMedGoogle Scholar
  163. Yount B, Curtis KM, Fritz EA, Hensley LE, Jahrling PB, Prentice E, Denison MR, Geisbert TW, Baric RS (2003) Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci USA 100:12995–13000CrossRefPubMedGoogle Scholar
  164. Ziebuhr J, Herold J, Siddell SG (1995) Characterization of a human coronavirus (strain 229E) 3C-like proteinase activity. J Virol 69:4331–4338PubMedGoogle Scholar
  165. Ziebuhr J, Heusipp G, Siddell SG (1997) Biosynthesis, purification, and characterization of the human coronavirus 229E 3C-like proteinase. J Virol 71:3992–3997PubMedGoogle Scholar
  166. Ziebuhr J, Siddell SG (1999) Processing of the human coronavirus 229E replicase polyproteins by the virus-encoded 3C-like proteinase: identification of proteolytic products and cleavage sites common to pp1a and pp1ab. J Virol 73:177–185PubMedGoogle Scholar
  167. Ziebuhr J, Snijder EJ, Gorbalenya AE (2000) Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 81:853–879PubMedGoogle Scholar
  168. Ziebuhr J, Thiel V, Gorbalenya AE (2001) The autocatalytic release of a putative RNA virus transcription factor from its polyprotein precursor involves two paralogous papain-like proteases that cleave the same peptide bond. J Biol Chem 276:33220–33232CrossRefPubMedGoogle Scholar
  169. Ziebuhr J, Bayer S, Cowley JA, Gorbalenya AE (2003) The 3C-like proteinase of an invertebrate nidovirus links coronavirus and potyvirus homologs. J Virol 77:1415–1426CrossRefPubMedGoogle Scholar
  170. Zuo Y, Deutscher MP (2001) Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res 29:1017–1026CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • J. Ziebuhr
    • 1
  1. 1.Institute of Virology and ImmunologyUniversity of WürzburgWürzburgGermany

Personalised recommendations