Viral RNA Replication in Association with Cellular Membranes

  • A. Salonen
  • T. Ahola
  • L. Kääriäinen
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 285)


All plus-strand RNA viruses replicate in association with cytoplasmic membranes of infected cells. The RNA replication complex of many virus families is associated with the endoplasmic reticulum membranes, for example, picorna-, flavi-, arteri-, and bromoviruses. However, endosomes and lysosomes (togaviruses), peroxisomes and chloroplasts (tombusviruses), and mitochondria (nodaviruses) are also used as sites for RNA replication. Studies of individual nonstructural proteins, the virus-specific components of the RNA replicase, have revealed that the replication complexes are associated with the membranes and targeted to the respective organelle by the ns proteins rather than RNA. Many ns proteins have hydrophobic sequences and may transverse the membrane like polytopic integral membrane proteins, whereas others interact with membranes monotopically. Hepatitis C virus ns proteins offer examples of polytopic transmembrane proteins (NS2, NS4B), a “tip-anchored” protein attached to the membrane by an amphipathic α-helix (NS5A) and a “tail-anchored” posttranslationally inserted protein (NS5B). Semliki Forest virus nsP1 is attached to the plasma membrane by a specific binding peptide in the middle of the protein, which forms an amphipathic α-helix. Interaction of nsP1 with membrane lipids is essential for its capping enzyme activities. The other soluble replicase proteins are directed to the endo-lysosomal membranes only as part of the initial polyprotein. Poliovirus ns proteins utilize endoplasmic reticulum membranes from which vesicles are released in COPII coats. However, these vesicles are not directed to the normal secretory pathway, but accumulate in the cytoplasm. In many cases the replicase proteins induce membrane invaginations or vesicles, which function as protective environments for RNA replication.


Nonstructural Protein Replication Complex Semliki Forest Virus Equine Arteritis Virus Brome Mosaic Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agirre A, Barco A, Carrasco L, Nieva JL (2002) Viroporin-mediated membrane permeabilization. Pore formation by nonstructural poliovirus 2B protein. J Biol Chem 277:40434–40441CrossRefPubMedGoogle Scholar
  2. Ahola T, Kääriäinen L (1995) Reaction in alphavirus mRNA capping: formation of a covalent complex of nonstructural protein nsP1 with 7-methyl-GMP. Proc Natl Acad Sci USA 92:507–511PubMedGoogle Scholar
  3. Ahola T, Lampio A, Auvinen P, Kääriäinen L (1999) Semliki Forest virus mRNA capping enzyme requires association with anionic membrane phospholipids for activity. EMBO J 18:3164–3172CrossRefPubMedGoogle Scholar
  4. Ahola T, Kujala P, Tuittila M, Blom T, Laakkonen P, Hinkkanen A, Auvinen P (2000) Effects of palmitoylation of replicase protein nsP1 on alphavirus infection. J Virol 74:6725–6733CrossRefPubMedGoogle Scholar
  5. Barco A, Carrasco L (1995) A human virus protein, poliovirus protein 2BC, induces membrane proliferation and blocks the exocytic pathway in the yeast Saccharomyces cerevisiae. EMBO J 14:3349–3364PubMedGoogle Scholar
  6. Barton DJ, Flanegan JB (1997) Synchronous replication of poliovirus RNA: initiation of negative-strand RNA synthesis requires the guanidine-inhibited activity of protein 2C. J Virol 71:8482–8489PubMedGoogle Scholar
  7. Bolten R, Egger D, Gosert R, Schaub G, Landmann L, Bienz K (1998) Intracellular localization of polio-virus plus-and minus-strand RNA visualized by strand-specific fluorescent in situ hybridization. J Virol 72:8578–8585PubMedGoogle Scholar
  8. Brass V, Bieck E, Montserret R, Wolk B, Hellings JA, Blum HE, Penin F, Moradpour D (2002) An amino-terminal amphipathic alpha-helix mediates membrane association of the hepatitis C virus nonstructural protein 5A. J Biol Chem 277:8130–8139CrossRefPubMedGoogle Scholar
  9. Buck KW (1996) Comparison of the replication of positive-stranded RNA viruses of plants and animals. Adv Virus Res 47:159–251PubMedGoogle Scholar
  10. Caliguiri LA, Tamm I (1970) The role of cytoplasmic membranes in poliovirus biosynthesis. Virology 42:100–111CrossRefPubMedGoogle Scholar
  11. Carette JE, Stuiver M, van Lent J, Wellink J, van Kammen A (2000) Cowpea mosaic virus infection induces a massive proliferation of endoplasmic reticulum but not Golgi membranes and is dependent on de novo membrane synthesis. J Virol 74:6556–6563CrossRefPubMedGoogle Scholar
  12. Carette JE, van Lent J, MacFarlane SA, Wellink J, van Kammen A (2002) Cowpea mosaic virus 32-and 60-kilodalton replication proteins target and change the morphology of endoplasmic reticulum membranes. J Virol 76:6293–6301CrossRefPubMedGoogle Scholar
  13. Cho MW, Teterina N, Egger D, Bienz K, Ehrenfeld E (1994) Membrane rearrangement and vesicle induction by recombinant poliovirus 2C and 2BC in human cells. Virology 202:129–145CrossRefPubMedGoogle Scholar
  14. Cook PR (1999) The organization of replication and transcription. Science 284:1790–1795CrossRefPubMedGoogle Scholar
  15. de Graaff M, Jaspars EMJ (1994) Plant viral RNA synthesis in cell-free systems. Annu Rev Phytopathol 32:311–335CrossRefGoogle Scholar
  16. de Jong AS, Wessels E, Dijkman HB, Galama JM, Melchers WJ, Willems PH, van Kuppeveld FJ (2003) Determinants for membrane association and permeabilization of the coxsackievirus 2B protein and the identification of the Golgi complex as the target organelle. J Biol Chem 278:1012–1021CrossRefPubMedGoogle Scholar
  17. den Boon JA, Chen J, Ahlquist P (2001) Identification of sequences in brome mosaic virus replicase protein 1a that mediate association with endoplasmic reticulum membranes. J Virol 75:12370–12381CrossRefPubMedGoogle Scholar
  18. Dodd DA, Giddings THJ, Kirkegaard K (2001) Poliovirus 3A protein limits interleukin-6 (IL-6), IL-8, and beta interferon secretion during viral infection. J Virol 75:8158–8165CrossRefPubMedGoogle Scholar
  19. Doedens JR, Kirkegaard K (1995) Inhibition of cellular protein secretion by poliovirus proteins 2B and 3A. EMBO J 14:894–907PubMedGoogle Scholar
  20. Dubuisson J, Penin F, Moradpour D (2002) Interaction of hepatitis C virus proteins with host cell membranes and lipids. Trends Cell Biol 12:517–523CrossRefPubMedGoogle Scholar
  21. Echeverri AC, Dasgupta A (1995) Amino terminal regions of poliovirus 2C protein mediate membrane binding. Virology 208:540–553CrossRefPubMedGoogle Scholar
  22. Egger D, Bienz K (2002) Recombination of poliovirus RNA proceeds in mixed replication complexes originating from distinct replication start sites. J Virol 76:10960–10971CrossRefPubMedGoogle Scholar
  23. Egger D, Teterina N, Ehrenfeld E, Bienz K (2000) Formation of the poliovirus replication complex requires coupled viral translation, vesicle production, and viral RNA synthesis. J Virol 74:6570–6580CrossRefPubMedGoogle Scholar
  24. Egger D, Wolk B, Gosert R, Bianchi L, Blum HE, Moradpour D, Bienz K (2002) Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J Virol 76:5974–5984CrossRefPubMedGoogle Scholar
  25. Froshauer S, Kartenbeck J, Helenius A (1988) Alphavirus RNA replicase is located on the cytoplasmic surface of endosomes and lysosomes. J Cell Biol 107:2075–2086CrossRefPubMedGoogle Scholar
  26. Gomez de Cedrön M, Ehsani N, Mikkola ML, García JA, Kääriäinen L (1999) RNA helicase activity of Semliki Forest virus replicase protein NSP2. FEBS Lett 448:19–22CrossRefPubMedGoogle Scholar
  27. Gosert R, Kanjanahaluethai A, Egger D, Bienz K, Baker SC (2002) RNA replication of mouse hepatitis virus takes place at double-membrane vesicles. J Virol 76:3697–3708CrossRefPubMedGoogle Scholar
  28. Grimley PM, Berezesky IK, Friedman RM (1968) Cytoplasmic structures associated with an arbovirus infection: loci of viral ribonucleic acid synthesis. J Virol 2:1326–1338PubMedGoogle Scholar
  29. Hayes RJ, Buck KW (1990) Complete replication of a eukaryotic virus RNA in vitro by a purified RNA-dependent RNA polymerase. Cell 63:363–368CrossRefPubMedGoogle Scholar
  30. Hügle T, Fehrmann F, Bieck E, Kohara M, Krausslich HG, Rice CM, Blum HE, Moradpour D (2001) The hepatitis C virus nonstructural protein 4B is an integral endoplasmic reticulum membrane protein. Virology 284:70–81CrossRefPubMedGoogle Scholar
  31. Hurley JH, Wendland B (2002) Endocytosis: driving membranes around the bend. Cell 111:143–146CrossRefPubMedGoogle Scholar
  32. Ivashkina N, Wolk B, Lohmann V, Bartenschlager R, Blum HE, Penin F, Moradpour D (2002) The hepatitis C virus RNA-dependent RNA polymerase membrane insertion sequence is a transmembrane segment. J Virol 76:13088–13093CrossRefPubMedGoogle Scholar
  33. Kääriäinen L, Ahola T (2002) Functions of alphavirus nonstructural proteins in RNA replication. Prog Nucleic Acid Res Mol Biol 71:187–222PubMedGoogle Scholar
  34. Kääriäinen L, Söderlund H (1978) Structure and replication of alphaviruses. Curr Top Microbiol Immunol 82:15–69PubMedGoogle Scholar
  35. Koonin EV, Dolja VV (1993) Evolution and taxonomy of positive-strand RNA viruses: Implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28:375–430PubMedGoogle Scholar
  36. Kujala P, Ahola T, Ehsani N, Auvinen P, Vihinen H, Kääriäinen L (1999) Intracellular distribution of rubella virus nonstructural protein P150. J Virol 73:7805–7811PubMedGoogle Scholar
  37. Kujala P, Ikäheimonen A, Ehsani N, Vihinen H, Auvinen P, Kääriäinen L (2001) Biogenesis of the Semliki Forest virus RNA replication complex. J Virol 75:3873–3884CrossRefPubMedGoogle Scholar
  38. Laakkonen P, Ahola T, Kääriäinen L (1996) The effects of palmitoylation on membrane association of Semliki Forest virus RNA capping enzyme. J Biol Chem 271:28567–28571CrossRefPubMedGoogle Scholar
  39. Laakkonen P, Auvinen P, Kujala P, Kääriäinen L (1998) Alphavirus replicase protein Nsp1 induces filopodia and rearrangement of actin filaments. J Virol 72:10265–10269PubMedGoogle Scholar
  40. Lai MC, Holmes KV (2001) Coronaviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 1163–1185Google Scholar
  41. Lampio A, Kilpeläinen I, Pesonen S, Karhi K, Auvinen P, Somerharju P, Kääriäinen L (2000) Membrane binding mechanism of an RNA virus-capping enzyme. J Biol Chem 275:37853–37859CrossRefPubMedGoogle Scholar
  42. Lee J-Y, Marshall JA, Bowden DS (1994) Characterization of rubella virus replication complexes using antibodies to double-stranded RNA. Virology 200:307–312CrossRefPubMedGoogle Scholar
  43. Lee WM, Ishikawa M, Ahlquist P (2001) Mutation of host delta9 fatty acid desaturase inhibits brome mosaic virus RNA replication between template recognition and RNA synthesis. J Virol 75:2097–2106CrossRefPubMedGoogle Scholar
  44. Lemm JA, Rümenapf T, Strauss EG, Strauss JH, Rice CM (1994) Polypeptide requirements for assembly of functional Sindbis virus replication complexes: a model for the temporal regulation of minus-and plus-strand RNA synthesis. EMBO J 13:2925–2934PubMedGoogle Scholar
  45. Lemm JA, Bergqvist A, Read CM, Rice CM (1998) Template-dependent initiation of Sindbis virus RNA replication in vitro. J Virol 72:6546–6553PubMedGoogle Scholar
  46. Lyle JM, Clewell A, Richmond K, Richards OC, Hope DA, Schultz SC, Kirkegaard K (2002) Similar structural basis for membrane localization and protein priming by an RNA-dependent RNA polymerase. J Biol Chem 277:16324–16331CrossRefPubMedGoogle Scholar
  47. Mackenzie JM, Jones MK, Westaway EG (1999) Markers for trans-Golgi membranes and the intermediate compartment localize to induced membranes with distinct replication functions in flavivirus-infected cells. J Virol 73:9555–9567PubMedGoogle Scholar
  48. Mackenzie JM, Khromykh AA, Westaway EG (2001) Stable expression of noncytopathic Kunjin replicons simulates both ultrastructural and biochemical characteristics observed during replication of Kunjin virus. Virology 279:161–172CrossRefPubMedGoogle Scholar
  49. Magden J, Takeda N, Li T, Auvinen P, Ahola T, Miyamura T, Merits A, Kääriäinen L (2001) Virus-specific mRNA capping enzyme encoded by hepatitis E virus. J Virol 75:6249–6255CrossRefPubMedGoogle Scholar
  50. Magliano D, Marshall JA, Bowden DS, Vardaxis N, Meanger J, Lee J-Y (1998) Rubella virus replication complexes are virus-modified lysosomes. Virology 240:57–63CrossRefPubMedGoogle Scholar
  51. Más P, Beachy RN (1999) Replication of tobacco mosaic virus on endoplasmic reticulum and role of the cytoskeleton and virus movement protein in intracellular distribution of viral RNA. J Cell Biol 147:945–958CrossRefPubMedGoogle Scholar
  52. Mi S, Stollar V (1991) Expression of Sindbis virus nsP1 and methyltransferase activity in Escherichia coli. Virology 184:423–427PubMedGoogle Scholar
  53. Miller DJ, Ahlquist P (2002) Flock house virus RNA polymerase is a transmembrane protein with amino-terminal sequences sufficient for mitochondrial localization and membrane insertion. J Virol 76:9856–9867CrossRefPubMedGoogle Scholar
  54. Miller DJ, Schwartz MD, Ahlquist P (2001) Flock house virus RNA replicates on outer mitochondrial membranes in Drosophila cells. J Virol 75:11664–11676CrossRefPubMedGoogle Scholar
  55. Mottola G, Cardinali G, Ceccacci A, Trozzi C, Bartholomew L, Torrisi MR, Pedrazzini E, Bonatti S, Migliaccio G (2002) Hepatitis C virus nonstructural proteins are localized in a modified endoplasmic reticulum of cells expressing viral subgenomic replicons. Virology 293:31–43CrossRefPubMedGoogle Scholar
  56. Osman TAM, Buck KW (1996) Complete replication in vitro of tobacco mosaic virus RNA by a template-dependent, membrane-bound RNA polymerase. J Virol 70:6227–6234PubMedGoogle Scholar
  57. Paul AV, Molla A, Wimmer E (1994) Studies of a putative amphipathic helix in the N-terminus of poliovirus protein 2C. Virology 199:188–199.CrossRefPubMedGoogle Scholar
  58. Pedersen KW, van der Meer Y, Roos N, Snijder EJ (1999) Open reading frame 1a-encoded subunits of the arterivirus replicase induce endoplasmic reticulum-derived double-membrane vesicles which carry the viral replication complex. J Virol 73:2016–2026PubMedGoogle Scholar
  59. Peränen J, Kääriäinen L (1991) Biogenesis of type I cytopathic vacuoles in Semliki Forest virus-infected BHK cells. J Virol 65:1623–1627PubMedGoogle Scholar
  60. Peränen J, Takkinen K, Kalkkinen N, Kääriäinen L (1988) Semliki Forest virus-specific non-structural protein nsP3 is a phosphoprotein. J Gen Virol 69:2165–2178PubMedGoogle Scholar
  61. Peränen J, Rikkonen M, Liljeström P, Kääriäinen L (1990) Nuclear localization of Semliki Forest virus-specific nonstructural protein nsP2. J Virol 64:1888–1896PubMedGoogle Scholar
  62. Peränen J, Laakkonen P, Hyvönen M, Kääriäinen L (1995) The alphavirus replicase protein nsP1 is membrane-associated and has affinity to endocytic organelles. Virology 208:610–620CrossRefPubMedGoogle Scholar
  63. Pfister T, Wimmer E (1999) Characterization of the nucleoside triphosphatase activity of poliovirus protein 2C reveals a mechanism by which guanidine inhibits poliovirus replication. J Biol Chem 274:6992–7001CrossRefPubMedGoogle Scholar
  64. Pfister T, Mirzayan C, Wimmer E (1999) Polioviruses (Picornaviridae): molecular biology. In: Granoff A, Webster RG (eds) Encyclopedia of virology, 2nd edition. Academic Press, San Diego, pp 1330–1348Google Scholar
  65. Piccininni S, Varaklioti A, Nardelli M, Dave B, Raney KD, McCarthy JE (2002) Modulation of the hepatitis C virus RNA-dependent RNA polymerase activity by the non-structural (NS) 3 helicase and the NS4B membrane protein. J Biol Chem 277:45670–45679CrossRefPubMedGoogle Scholar
  66. Prod'homme D, Le Panse S, Drugeon G, Jupin I (2001) Detection and subcellular localization of the turnip yellow mosaic virus 66 K replication protein in infected cells. Virology 281:88–101CrossRefPubMedGoogle Scholar
  67. Racaniello VR (2001) Picornaviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology, 4th edition. Lippincott Williams & Wilkins, Philadelphia, pp 685–722Google Scholar
  68. Restrepo-Hartwig MA, Ahlquist P (1996) Brome mosaic virus helicase-and polymerase-like proteins colocalize on the endoplasmic reticulum at sites of viral RNA synthesis. J Virol 70:8908–8916PubMedGoogle Scholar
  69. Ritzenthaler C, Laporte C, Gaire F, Dunoyer P, Schmitt C, Duval S, Piequet A, Loudes AM, Rohfritsch O, Stussi-Garaud C, Pfeiffer P (2002) Grapevine fanleaf virus replication occurs on endoplasmic reticulum-derived membranes. J Virol 76:8808–8819CrossRefPubMedGoogle Scholar
  70. Rochon DM (1999) Tombusviruses. In: Granoff A, Webster RG (eds) Encyclopedia of virology, 2nd edition. Academic Press, San Diego, pp 1789–1798Google Scholar
  71. Rubino L, Di Franco A, Russo M (2000) Expression of a plant virus non-structural protein in Saccharomyces cerevisiae causes membrane proliferation and altered mitochondrial morphology. J Gen Virol 81:279–286PubMedGoogle Scholar
  72. Rust RC, Landmann L, Gosert R, Tang BL, Hong W, Hauri HP, Egger D, Bienz K (2001) Cellular COPII proteins are involved in production of the vesicles that form the poliovirus replication complex. J Virol 75:9808–9818CrossRefPubMedGoogle Scholar
  73. Salonen A, Vasiljeva L, Merits A, Magden J, Jokitalo E, Kääriäinen L (2003) Properly folded nonstructural polyprotein directs the Semliki Forest virus replication complex to endosomal compartment. J Virol 77:1691–1702CrossRefPubMedGoogle Scholar
  74. Sandoval IV, Carrasco L (1997) Poliovirus infection and expression of the poliovirus protein 2B provoke the disassembly of the Golgi complex, the organelle target for the antipoliovirus drug Ro-090179. J Virol 71:4679–4693PubMedGoogle Scholar
  75. Schaad MC, Jensen PE, Carrington JC (1997) Formation of plant RNA virus replication complexes on membranes: role of an endoplasmic reticulum-targeted viral protein. EMBO J 16:4049–4059CrossRefPubMedGoogle Scholar
  76. Schlegel A, Giddings JTH, Ladinsky MS, Kirkegaard K (1996) Cellular origin and ultrastructure of membranes induced during poliovirus infection. J Virol 70:6576–6588PubMedGoogle Scholar
  77. Schwartz M, Chen J, Janda M, Sullivan M, den Boon J, Ahlquist P (2002) A positivestrand RNA virus replication complex parallels form and function of retrovirus capsids. Mol Cell 9:505–514CrossRefPubMedGoogle Scholar
  78. Semler BL, Wimmer E (eds) (2002) Molecular biology of picornaviruses. ASM Press, Washington, DCGoogle Scholar
  79. Snijder EJ, Meulenberg JJM (2001) Arteriviruses. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 1205–1220Google Scholar
  80. Snijder EJ, van Tol H, Roos N, Pedersen KW (2001) Non-structural proteins 2 and 3 interact to modify host cell membranes during the formation of the arterivirus replication complex. J Gen Virol 82:985–994PubMedGoogle Scholar
  81. Strauss JH, Strauss EG (1994) The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58:491–562PubMedGoogle Scholar
  82. Suhy DA, Giddings THJ, Kirkegaard K (2000) Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles. J Virol 74:8953–8965CrossRefPubMedGoogle Scholar
  83. Teterina N, Gorbalenya AE, Egger D, Bienz K, Ehrenfeld E (1997) Poliovirus 2C protein determinants of membrane binding and rearrangements in mammalian cells. J Virol 71:8962–8972PubMedGoogle Scholar
  84. Teterina NL, Egger D, Bienz K, Brown DM, Semler BL, Ehrenfeld E (2001) Requirements for assembly of poliovirus replication complexes and negative-strand RNA synthesis. J Virol 75:3841–3850CrossRefPubMedGoogle Scholar
  85. Towner JS, Ho TV, Semler BL (1996) Determinants of membrane association for poliovirus protein 3AB. J Biol Chem 271:26810–26818CrossRefPubMedGoogle Scholar
  86. van der Heijden MW, Carette JE, Reinhoud PJ, Haegi A, Bol JF (2001) Alfalfa mosaic virus replicase proteins P1 and P2 interact and colocalize at the vacuolar membrane. J Virol 75:1879–1887CrossRefPubMedGoogle Scholar
  87. van der Meer Y, van Tol H, Krijnse Locker J, Snijder EJ (1998) ORF1a-encoded replicase subunits are involved in the membrane association of the arterivirus replication complex. J Virol 72:6689–6698PubMedGoogle Scholar
  88. Vasiljeva L, Merits A, Auvinen P, Kääriäinen L (2000) Identification of a novel function of the Alphavirus capping apparatus—RNA 5′ triphosphatase activity of Nsp2. J Biol Chem 275:17281–17287CrossRefPubMedGoogle Scholar
  89. Vasiljeva L, Valmu L, Kääriäinen L, Merits A (2001) Site-specific protease activity of the carboxyl-terminal domain of Semliki Forest virus replicase protein nsP2. J Biol Chem 276:30786–30793CrossRefPubMedGoogle Scholar
  90. Vasiljeva L, Merits A, Golubtsov A, Sizemskaja V, Kääriäinen L, Ahola T (2003) Regulation of the sequential processing of Semliki Forest virus replicase polyprotein. J Biol Chem 278:41636–41645CrossRefPubMedGoogle Scholar
  91. Vihinen H, Ahola T, Tuittila M, Merits A, Kääriäinen L (2001) Elimination of phosphorylation sites of Semliki Forest virus replicase protein nsP3. J Biol Chem 276:5745–5752CrossRefPubMedGoogle Scholar
  92. Weber-Lotfi F, Dietrich A, Russo M, Rubino L (2002) Mitochondrial targeting and membrane anchoring of a viral replicase in plant and yeast cells. J Virol 76:10485–10496CrossRefPubMedGoogle Scholar
  93. Westaway EG, Mackenzie JM, Kenney MT, Jones MK, Khromykh AA (1997) Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and NS3 with double-stranded RNA, and NS2B with NS3, in virus-induced membrane structures. J Virol 71:6650–6661PubMedGoogle Scholar
  94. Westaway EG, Khromykh AA, Mackenzie JM (1999) Nascent flavivirus RNA colocalized in situ with double-stranded RNA in stable replication complexes. Virology 258:108–117CrossRefPubMedGoogle Scholar
  95. Westaway EG, Mackenzie JM, Khromykh AA (2002) Replication and gene function in Kunjin virus. Curr Top Microbiol Immunol 267:323–351PubMedGoogle Scholar
  96. Wölk B, Sansonno D, Krausslich HG, Dammacco F, Rice CM, Blum HE, Moradpour D (2000) Subcellular localization, stability, and trans-cleavage competence of the hepatitis C virus NS3-NS4A complex expressed in tetracycline-regulated cell lines. J Virol 74:2293–2304CrossRefPubMedGoogle Scholar
  97. Wu S-X, Ahlquist P, Kaesberg P (1992) Active complete in vitro replication of nodavirus RNA requires glycerophospholipid. Proc Natl Acad Sci USA 89:11136–11140PubMedGoogle Scholar
  98. Yamaga AK, Ou J (2002) Membrane topology of the hepatitis C virus NS2 protein. J Biol Chem 277:33228–33234CrossRefPubMedGoogle Scholar
  99. Yamanaka T, Imai T, Satoh R, Kawashima A, Takahashi M, Tomita K, Kubota K, Meshi T, Naito S, Ishikawa M (2002) Complete inhibition of tobamovirus multiplication by simultaneous mutations in two homologous host genes. J Virol 76:2491–2497CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • A. Salonen
    • 1
  • T. Ahola
    • 1
  • L. Kääriäinen
    • 1
  1. 1.Program in Cellular Biotechnology, Institute of Biotechnology, Viikki BiocenterUniversity of HelsinkiHelsinkiFinland

Personalised recommendations