Advertisement

Container terminal operation and operations research — a classification and literature review

  • Dirk Steenken
  • Stefan Voß
  • Robert Stahlbock
Chapter

Abstract

In the last four decades the container as an essential part of a unitload-concept has achieved undoubted importance in international sea freight transportation. With ever increasing containerization the number of seaport container terminals and competition among them have become quite remarkable. Operations are nowadays unthinkable without effective and efficient use of information technology as well as appropriate optimization (operations research) methods. In this paper we describe and classify the main logistics processes and operations in container terminals and present a survey of methods for their optimization.

Keywords

Container terminal Logistics Planning Optimization Heuristics Simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alicke K (1999) Modellierung und Optimierung von mehrstufigen Umschlagsystemen. PhD thesis, Universität KarlsruheGoogle Scholar
  2. 2.
    Alicke K (2002) Modeling and optimization of the intermodal terminal Mega Hub. OR Spectrum 24: 1–17CrossRefzbMATHGoogle Scholar
  3. 3.
    Anonymous. Container Traffic of the top 100 Ports, 1970–2000. http://www.cionline.co.uk — last check of address: Oct 13, 2003Google Scholar
  4. 4.
    Anonymous (2003). The Journal of Commerce, Jul 14–20Google Scholar
  5. 5.
    Asef-Vaziri A, Cadavid M, Dougherty E (2003) A combined container handling system in maritime terminals. Paper presented at Annual Meeting INFORMS Atlanta 2003, Oct 19–22, California State University, NorthridgeGoogle Scholar
  6. 6.
    Asef-Vaziri A, Khoshnevis B, Parsaei H (2003) Potentials for ASRS and AGVS in Maritime Container Terminals. Working paper, University of HoustonGoogle Scholar
  7. 7.
    Avriel M, Penn M (1993) Exact and approximate solutions of the container ship stowage problem. Computers and Industrial Engineering 25(1–4): 271–274Google Scholar
  8. 8.
    Avriel M, Penn M, Shpirer N (2000) Container ship stowage problem: complexity and connection to the coloring of circle graphs. Discrete Applied Mathematics 103(1–3): 271–279Google Scholar
  9. 9.
    Avriel M, Penn M, Shpirer N, Witteboon S (1998) Stowage planning for container ships to reduce the number of shifts. Annals of Operations Research 76: 55–71CrossRefGoogle Scholar
  10. 10.
    Ball M, Magazine M (1988) Sequencing of insertions in printed circuit board assembly. Operations Research 36: 192–201Google Scholar
  11. 11.
    Bent R W, van Hentenryck P (2002) Scenario-based planning for partially dynamic vehicle routing with stochastic customers. Technical Report, Department of Computer Science, Brown University, Providence, RIGoogle Scholar
  12. 12.
    Bish E K (2003) A multiple-crane-constrained scheduling problem in a container terminal. European Journal of Operational Research 144: 83–107zbMATHGoogle Scholar
  13. 13.
    Bish E K, Leong T-Y, Li C-L, Ng J W C, Simchi-Levi D (2001) Analysis of a new vehicle scheduling and location problem. Naval Research Logistics 48: 363–385CrossRefGoogle Scholar
  14. 14.
    Bodin L, Golden B, Assad A, Ball M (1983) Routing and scheduling of vehicles and crews. Computers & Operations Research 10: 63–211Google Scholar
  15. 15.
    Böse J, Reiners T, Steenken D, Voß S (2000) Vehicle dispatching at seaport container terminals using evolutionary algorithms. In: Sprague R H (ed) Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, DTM-IT, pp 1–10. IEEE, PiscatawayGoogle Scholar
  16. 16.
    Boyes J R C (ed) (1994) Containerisation international yearbook, ranking of containerports of the world. National Magazin, LondonGoogle Scholar
  17. 17.
    Boyes J R C (ed) (1997) Containerisation international yearbook, ranking of containerports of the world. National Magazin, LondonGoogle Scholar
  18. 18.
    Bruno G, Ghiani G, Improta G (2000) Dynamic positioning of idle automated guided vehicles. Journal of Intelligent Manufacturing 11: 209–215CrossRefGoogle Scholar
  19. 19.
    Bruzzone A, Signorile R (1998) Simulation and genetic algorithms for ship planning and shipyard layout. Simulation 71: 74–83Google Scholar
  20. 20.
    Bruzzone AG, Giribone P, Revetria R (1999) Operative requirements and advances for the new generation simulators in multimodal container terminals. In: Farrington P A, Nembhard H B, Sturrock D T, Evans G W (eds) Proceedings of the 31st Conference on Winter Simulation, vol 2, pp 1243–1252. ACM Press, New YorkGoogle Scholar
  21. 21.
    Cao B, Uebe G (1993) Analgorithm for solving capacitated multicommodity p-median transportation problems. Journal of the Operational Research Society 44: 259–269Google Scholar
  22. 22.
    Cao B, Uebe G (1995) Solving transportation problems with nonlinear side constraints with tabu search. Computers & Operations Research 22: 593–603CrossRefGoogle Scholar
  23. 23.
    Carrascosa C, Rebollo M, Julian V, Botti V (2001)AMAS approach for port container terminal management: the transtainer agent. In: Actas de SCI’01, pp 1–5. International Institute of Informatics and Systemics, Orlando, FLGoogle Scholar
  24. 24.
    de Castilho B, Daganzo C F (1993) Handling strategies for import containers at marine terminals. Transportation Research-B 27: 151–166Google Scholar
  25. 25.
    Chan SH (2001) DynamicAGV-container job deployment strategy. Master of science, National University of SingaporeGoogle Scholar
  26. 26.
    Chen C S, Lee S M, Shen Q S (1995) An analytical model for the container loading problem. European Journal of Operational Research 80: 68–76Google Scholar
  27. 27.
    Chen T (1999) Yard operations in the container terminal — a study in the ‘unproductive moves’. Maritime Policy and Management 26: 27–38Google Scholar
  28. 28.
    Cheu R L, Chew E P, Wee C L (2003) Estimating total distance for hauling import and export containers. Journal of Transport Engineering 129: 292–299Google Scholar
  29. 29.
    Cheung R K, Chen C Y (1998) A two-stage stochastic network model and solution methods for the dynamic empty container allocation problem. Transportation Science 32(2): 142–162Google Scholar
  30. 30.
    Cheung RK, Li C-L, Lin W (2002) Interblock crane deployment in container terminals. Transportation Science 36(1): 79–93CrossRefGoogle Scholar
  31. 31.
    Crainic T G, Gendreau M, Dejax P (1993) Dynamic and stochastic models for the allocation of empty containers. Operations Research 41: 102–126Google Scholar
  32. 32.
    Daganzo C F (1989) The crane scheduling problem. Transportation Research-B 23B(3): 159–175Google Scholar
  33. 33.
    Davies A P, Bischoff E E (1999) Weight distribution considerations in container loading. European Journal of Operational Research 114: 509–527CrossRefGoogle Scholar
  34. 34.
    Dell’Olmo P, Lulli G (2003) Planning activities in a network of logistic platforms with shared resources. Technical Report, Department of Statistics, Probability and Applied Statistics, University of RomeGoogle Scholar
  35. 35.
    Desrochers M, Lenstra J K, Savelsbergh M W P (1990) A classification scheme for vehicle routing and scheduling problems. European Journal of Operational Research 46: 322–332CrossRefGoogle Scholar
  36. 36.
    Dror M (ed) (2000) Arc routing. Kluwer, BostonGoogle Scholar
  37. 37.
    Dubrovsky O, Levitin G, Penn M (2002) A genetic algorithm with a compact solution encoding for the container ship stowage problem. Journal of Heuristics 8: 585–599CrossRefGoogle Scholar
  38. 38.
    Duinkerken M B, Evers J J M, Ottjes J A (1999) TRACES: Traffic control engineering system — a case-study on container terminal automation. In: Proceedings of the 1999 Summer Computer Simulation Conference (SCSC 1999), July 1999, Chicago [SCS], http://www.ocp.tudelft.nl/tt/users/duinkerk/papers/chi9907b.pdf — last check of address: July 30, 2003Google Scholar
  39. 39.
    Duinkerken M B, Evers J J M, Ottjes J A (2001) A simulation model for integrating quay transport and stacking policies on automated container terminals. In: Proceedings of the 15th European Simulation Multiconference (ESM2001), June 2001, Prague [SCS], http://www.ocp.tudelft.nl/tt/users/duinkerk/papers/pra0106a.pdf — last check of address: July 30, 2003Google Scholar
  40. 40.
    Duinkerken M B, Evers J J M, Ottjes J A (2002) Improving quay transport on automated container terminals. In: Proceedings of the IASTED International Conference Applied Simulation and Modelling (ASM 2002), Crete, June 2002, http://www.ocp.tudelft.nl/tt/users/duinkerk/papers/cre0206.pdf — last check of address: July 30, 2003Google Scholar
  41. 41.
    Duinkerken M B, Ottjes J A (2000) A simulation model for automated container terminals. In: Proceedings of the Business and Industry Simulation Symposium (ASTC 2000), April 2000, Washington, DC [SCS], pp 134–139, http://www.ocp.tudelft.nl/tt/users/duinkerk/papers/was0004a.pdf — last check of address: July 30, 2003Google Scholar
  42. 42.
    Duinkerken M B, Ottjes J A, Evers J J M, Kurstjens S, Dekker R, Dellaert N (1996) Simulation studies on inter terminal transport at the Maasvlakte. In: Proceedings 2nd TRAIL PhD Congress 1996 ‘Defence or attack’, May 1996, Rotterdam [TRAIL], http://www.ocp.tudelft.nl/tt/users/duinkerk/papers/rot9605a.pdf — last check of address: July 30, 2003Google Scholar
  43. 43.
    Duinkerken M B, Ottjes J A, Lodewijks G (2002) The application of distributed simulation in TOMAS: redesigning a complex transportation model. In: Yücesan E, Chen C-H, Snowdon J L, Charnes J M (eds) Proceedings of the 2002 Winter Simulation Conference (WSC 2002), December 2002, San Diego, http://www.ocp.tudelft.nl/tt/users/duinkerk/papers/san0212.pdf — last check of address: July 30, 2003Google Scholar
  44. 44.
    Duinkerken M B, Terstegge M J (2001) TRAVIS: an engineering tool to animate and validate AGV-systems. In: Proceedings of the International Conference on Simulation and Multimedia in Engineering Education (WMC 2001), January 2001, Phoenix [SCS], http://www.ocp.tudelft.nl/tt/users/duinkerk/papers/pho0101.pdf — last check of address: July 30, 2003Google Scholar
  45. 45.
    Edmond E D, Maggs R P (1978) How useful are queue models in port investment decisions for container berths? Journal of the Operational Research Society 29: 741–750Google Scholar
  46. 46.
    Eisenberg R, Stahlbock R, Voß S, Steenken D (2003) Sequencing and scheduling of movements in an automated container yard using double rail-mounted gantry cranes. Working paper, University of HamburgGoogle Scholar
  47. 47.
    Eley M (2003) A bottleneck assignment approach to the multiple container loading problem. OR Spectrum 25: 54–60CrossRefGoogle Scholar
  48. 48.
    Evers J J M, Koppers S A J (1996) Automated guided vehicle traffic control at a container terminal. Transportation Research-A 30: 21–34Google Scholar
  49. 49.
    Fagerholt K (2000) Evaluating the trade-off between the level of costumer service and transportation costs in a ship scheduling problem. Maritime Policy and Management 27(2): 145–153Google Scholar
  50. 50.
    Fung MK (2002) Forecasting Hong Kong’s container throughput: an error-correction model. Journal of Forecasting 21: 69–80CrossRefGoogle Scholar
  51. 51.
    Gademann A J R M, van de Velde S L (2000) Positioning automated guided vehicles in a loop layout. European Journal of Operational Research 127(3): 565–573CrossRefGoogle Scholar
  52. 52.
    Gambardella L M, Mastrolilli M, Rizzoli A E, Zaffalon M (2001) An optimization methodology for intermodal terminal management. Journal of Intelligent Manufacturing 12: 521–534CrossRefGoogle Scholar
  53. 53.
    Gambardella L M, Rizzoli A E (2000) The role of simulation and optimisation in intermodal container terminals. Working paper, Istituto Dalle Molle di Studi sull’Intelligenza Artificiale, Manno-Lugano, Switzerland, http://www.idsia.ch/luca/abstracts/papers/ess2000.pdf — last check of address: May 15, 2003Google Scholar
  54. 54.
    Gambardella L M, Rizzoli A E, Zaffalon M (1998) Simulation and planning of an intermodal container terminal. Simulation 71(2): 107–116Google Scholar
  55. 55.
    Gehlsen B, Page B (2001) A framework for distributed simulation optimization. In: Proceedings of the 33rd Conference on Winter Simulation, pp 508–514. IEEE Computer Society, Washington, DCGoogle Scholar
  56. 56.
    Gibson R, Carpenter B, Seeburger S (1992) A flexible port traffic planning model. In: Proceedings of the 1992 Winter Simulation Conference, pp 1296–1306Google Scholar
  57. 57.
    Giemsch P, Jellinghaus A (2003). Organization models for the containership stowage problem. Paper presented at the annual international conference of the German Operations Research Society (OR 2003), Sep 3–5, Heidelberg, http://www.andor.unikarlsruhe.de/fak/inst/andor/a10 www/Preprint/PaperGOR2003.pdf — last check of address: Oct 15, 2003Google Scholar
  58. 58.
    Grunow M, Günther H-O, Lehmann M (2004) Dispatching multi-loadAGVs in highly automated seaport container terminals. OR Spectrum 26(2): to appearGoogle Scholar
  59. 59.
    Grunow M, Günther H-O, Lehmann M (2004) Online-versus Offline-Einsatzplanung von fahrerlosen Transportsystemen in Containerhäfen. In: Spengler T, Voß S, Kopfer H (eds) Logistik Management, pp 399–410. Springer, Berlin Heidelberg New YorkGoogle Scholar
  60. 60.
    Guan Y, Cheung R K (2004) The berth allocation problem: models and solution methods. OR Spectrum 26: 75–92CrossRefGoogle Scholar
  61. 61.
    Guan Y, Xiao W-Q, Cheung R K, Li C-L (2002) A multiprocessor task scheduling model for berth allocation: heuristic and worst case analysis. Operations Research Letters 30: 343–350CrossRefGoogle Scholar
  62. 62.
    Gupta Y P, Somers T M (1992) The measurement of manufacturing flexibility. European Journal of Operational Research 60: 166–182CrossRefGoogle Scholar
  63. 63.
    Gutenschwager K, Böse J, Voß S (2003) Effiziente Prozesse im kombinierten Verkehr — Ein neuer Lösungsansatz zur Disposition von Portalkränen. Logistik Management 5(1): 62–73Google Scholar
  64. 64.
    Gutenschwager K, Niklaus C, Voß S (2004) Dispatching of an electric monorail system: applying meta-heuristics to an online pickup and delivery problem. Transportation Science (to appear)Google Scholar
  65. 65.
    Gutin G, Punnen A P (eds) (2002) The traveling salesman problem and its variations. Kluwer, BostonGoogle Scholar
  66. 66.
    Haghani A, Kaisar E I (2001) A model for designing container loading plans for containerships. Working paper, University of Maryland, presented at Transportation Research Board 2001 Annual MeetingGoogle Scholar
  67. 67.
    Hanafi S, Jesus J, Semet F (2003) The container assignment problem: a case study on the port of Lille. Working paper, University of Valenciennes, presented at ODYSSEUS 2003Google Scholar
  68. 68.
    Hartmann S (2004) A general framework for scheduling equipment and manpower on container terminals. OR Spectrum 26: 51–74zbMATHGoogle Scholar
  69. 69.
    Hartmann S (2004) Generating scenarios for simulation and optimization of container terminal logistics. OR Spectrum 26(2): to appearGoogle Scholar
  70. 70.
    Hayuth Y, Pollatschek M A, Roll Y (1994) Building a port simulator. Simulation 63: 179–189Google Scholar
  71. 71.
    van Hee K M, Wijbrands R J (1988) Decision support system for container terminal planning. European Journal of Operational Research 34: 262–272Google Scholar
  72. 72.
    van der Heijden M, Ebben M, Gademann N, van Harten A (2002) Scheduling vehicles in automated transportation systems: algorithms and case study. OR Spectrum 24: 31–58Google Scholar
  73. 73.
    Henesey L, Törnquist J (2002) Enemy at the gates: introduction of multi-agents in a terminal information community. In: Proceedings of Ports and Marinas, Rhodos, Greece, http://www.assert.bth.se/publications/HeneseyTornquist.pdf-last check of address: July 30, 2003Google Scholar
  74. 74.
    Henesey L, Wernstedt F, Davidsson P (2002) A market based approach to container port terminal management. In: Proceedings of the 15th European Conference on Artificial Intelligence, Workshop — Agent Technologies in Logistics, Lyon, France, http://www.assert.bth.se/publications/Marketv1.pdf — last check of address: July 30, 2003Google Scholar
  75. 75.
    Hoffarth L, Voß S (1994) Liegeplatzdisposition auf einem Containerterminal — Ansätze zur Entwicklung eines entscheidungsunterstützenden Systems. In: Dyckhoff H, Derigs U, Salomon M, Tijms H (eds) Operations Research Proceedings 1993, pp 89–95. Springer, Berlin Heidelberg New YorkGoogle Scholar
  76. 76.
    Holguín-Veras J, Jara-Díaz S (1999) Optimal pricing for priority service and space allocation in container ports. Transportation Research-B 33: 81–106Google Scholar
  77. 77.
    Holguín-Veras J, Walton C (1996) On the development of a computer system to simulate port operations considering priorities. In: Proceedings of the 28th Conference on Winter Simulation, pp 1471–1478. ACM Press, New YorkGoogle Scholar
  78. 78.
    Hulten L A R (1997) Container logistics and its management. PhD thesis, Chalmers University of Technology: Department of Transportation and LogisticsGoogle Scholar
  79. 79.
    ICC (International Chamber of Commerce) (2000) Incoterms 2000: ICC official rules for the interpretation of trade terms. ParisGoogle Scholar
  80. 80.
    Imai A, Nagaiwa K, Tat CW(1997) Efficient planning of berth allocation for container terminals in Asia. Journal of Advanced Transportation 31: 75–94Google Scholar
  81. 81.
    Imai A, Nishimura E, Papadimitriou S (2001) The dynamic berth allocation problem for a container port. Transportation Research-B 35(4): 401–417Google Scholar
  82. 82.
    Imai A, Nishimura E, Papadimitriou S (2003) Berth allocation with service priority. Transportation Research-B 37(5): 437–457Google Scholar
  83. 83.
    Ioannou P, Chassiakos A, Zhang J, Kanaris A, Unglaub R (2002) Automated container transport system between inland port and terminals. Project Report, University of Southern California, http://www.usc.edu/dept/ee/catt/2003/jianlong/02%20METRANS%20Final%20Report.pdf — last check of address: Oct 30, 2003Google Scholar
  84. 84.
    Ioannou P A, Jula H, Liu C-I, Vukadinovic K, Pourmohammadi H, Dougherty Jr E (2001) Advanced material handling: automated guided vehicles in agile ports. Final Report, University of Southern California, http://www.usc.edu/dept/ee/catt/2002/jula/Marine/FinalReport CCDoTT 981.pdf — last check of address: Oct 30, 2003Google Scholar
  85. 85.
    Ioannou P A, Kosmatopoulos E B, Jula H, Collinge A, Liu C-I, Asef-Vaziri A, Dougherty Jr E (2000) Cargo handling technologies. Final Report, University of Southern California, http://www.usc.edu/dept/ee/catt/2002/jula/Marine/FinalReport CCDoTT 97.pdf — last check of address: Oct 30, 2003Google Scholar
  86. 86.
    Kang J-G, Kim Y-D (2002) Stowage planning in maritime container transportation. Journal of the Operational Research Society 53: 415–426CrossRefGoogle Scholar
  87. 87.
    Khoshnevis B, Asef-Vaziri A (2000) 3D Virtual and physical simulation of automated container terminal and analysis of impact on in land transportation. Research Report, University of Southern California, http://www.metrans.org/Research/Final Report/99-14 Final.pdf — last check of address: Oct 30, 2003Google Scholar
  88. 88.
    Kia M, Shayan E, Ghotb F (2002) Investigation of port capacity under a new approach by computer simulation. Computers & Industrial Engineering 42: 533–540CrossRefGoogle Scholar
  89. 89.
    Kim K H (1997) Evaluation of the number of rehandles in container yards. Computers & Industrial Engineering 32: 701–711CrossRefGoogle Scholar
  90. 90.
    Kim KH, Bae JW(1998) Re-marshaling export containers in port container terminals. Computers & Industrial Engineering 35: 655–658Google Scholar
  91. 91.
    Kim K H, Kang J S, Ryu K R (2004) A beam search algorithm for the load sequencing of outbound containers in port container terminals. OR Spectrum 26: 93–116CrossRefGoogle Scholar
  92. 92.
    Kim KH, Kim HB (1998) The optimal determination of the space requirement and the number of transfer cranes for import containers. Computers & Industrial Engineering 35: 427–430Google Scholar
  93. 93.
    Kim K H, Kim H B (1999) Segregating space allocation models for container inventories in port container terminals. International Journal of Production Economics 59: 415–423Google Scholar
  94. 94.
    Kim K H, Kim H B (2002) The optimal sizing of the storage space and handling facilities for import containers. Transportation Research-B 36: 821–835CrossRefGoogle Scholar
  95. 95.
    Kim K H, Kim K Y (1999) An optimal routing algorithm for a transfer crane in port container terminals. Transportation Science 33(1): 17–33Google Scholar
  96. 96.
    Kim K H, Kim K Y (1999) Routing straddle carriers for the loading operation of containers using a beam search algorithm. Computers & Industrial Engineering 36: 106–136CrossRefGoogle Scholar
  97. 97.
    Kim KH, Lee KM, Hwang H(2003) Sequencing delivery and receiving operations for yard cranes in port container terminals. International Journal of Production Economics 84(3): 283–292Google Scholar
  98. 98.
    Kim K H, Moon K C (2003) Berth scheduling by simulated annealing. Transportation Research-B 37(6): 541–560Google Scholar
  99. 99.
    Kim K H, Park K T (2003) A note on a dynamic space-allocation method for outbound containers. European Journal of Operational Research 148(1): 92–101CrossRefGoogle Scholar
  100. 100.
    Kim K H, Park Y M, Ryu K-R (2000) Deriving decision rules to locate export containers in container yards. European Journal of Operational Research 124: 89–101CrossRefGoogle Scholar
  101. 101.
    Kim K H, Wang S J, Park Y-M, Yang C-H, Bae J W (2002). A simulation study on operation rules for automated container yards. Presentation/Proc. of the 7th Annual International Conference on Industrial EngineeringGoogle Scholar
  102. 102.
    Kim K Y, Kim K H(1997) Arouting algorithm for a single transfer crane to load export containers onto a containership. Computers & Industrial Engineering 33: 673–676Google Scholar
  103. 103.
    Kim K Y, Kim K H (1999) A routing algorithm for a single straddle carrier to load export containers onto a containership. International Journal of Production Economics 59: 425–433Google Scholar
  104. 104.
    Kim K Y, Kim K H (2003) Heuristic algorithms for routing yard-side equipment for minimizing loading times in container terminals. Naval Research Logistics 50: 498–514Google Scholar
  105. 105.
    Ko K-C, Egbelu P J (2003) Unidirectional AGV guidepath network design: a heuristic algorithm. International Journal of Production Research 41: 2325–2343Google Scholar
  106. 106.
    Koch J (1997) Die Entwicklung des Kombinierten Verkehrs. Gabler, Deutscher Universitäts-Verlag, WiesbadenGoogle Scholar
  107. 107.
    Koh P-H, Goh J L K, Ng H-S, Ng H-C (1994) Using simulation to preview plans of a container port operations. In: Proceedings of the 26th Conference on Winter Simulation, pp 1109–1115. Society for Computer Simulation International, San Diego, CAGoogle Scholar
  108. 108.
    Konings J W (1996) Integrated centres for the transshipment, storage, collection and distribution of goods: a survey of the possibilities for a high-quality intermodal transport concept. Transport Policy 3(1–2): 3–11Google Scholar
  109. 109.
    Koo P-H, Lee W S, Jang D W (2004) Fleet sizing and vehicle routing for container transportation in a static environment. OR Spectrum 26(2): to appearGoogle Scholar
  110. 110.
    Kozan E (1997) Comparison of analytical and simulation planning models of seaport container terminals. Transportation Planning and Technology 20: 235–248Google Scholar
  111. 111.
    Kozan E (1997) Increasing the operational efficiency of container terminals in Australia. Journal of the Operational Research Society 48: 151–161CrossRefzbMATHGoogle Scholar
  112. 112.
    Kozan E (2000) Optimising container transfers at multimodal terminals. Mathematical and Computer Modelling 31: 235–243CrossRefGoogle Scholar
  113. 113.
    Kozan E, Preston P (1999) Genetic algorithms to schedule container transfers at multimodal terminals. International Transactions of Operational Research 6: 311–329Google Scholar
  114. 114.
    Kurstjens S T G L, Dekker R, Dellaert N P, Duinkerken M B, Ottjes J A, Evers J J M (1996) Planning of inter terminal transport at the Maasvlakte. In: Proceedings 2nd TRAIL PhD Congress 1996 ‘Defence or attack’, May 1996, Rotterdam [TRAIL], http://www.ocp.tudelft.nl/tt/users/duinkerk/papers/rot9605b.pdf — last check of address: July 30, 2003Google Scholar
  115. 115.
    Lai K K, Shih K (1992) A study of container berth allocation. Journal of Advanced Transportation 26: 45–60CrossRefGoogle Scholar
  116. 116.
    Lawler E L, Lenstra J K, Rinnoy Kan A H G, Shmoys D B (eds) (1985) The traveling salesman problem — a guided tour of combinatorial optimization. Wiley, ChichesterGoogle Scholar
  117. 117.
    Legato P, Mazza R M(2001) Berth planning and resources optimisation at a container terminal via discrete event simulation. European Journal of Operational Research 133: 537–547CrossRefGoogle Scholar
  118. 118.
    Lemper B (2003). Containerschifffahrt und Welthandel — eine ‘symbiose’. http://www.gdv.de/download/VortragLemper,pdf — last check of address: July 15, 2003Google Scholar
  119. 119.
    Leong C Y (2001) Simulation study of dynamic AGV-container job deployment scheme. Master of science, National University of SingaporeGoogle Scholar
  120. 120.
    Li C-L, Cai X, Lee C-Y (1998) Scheduling with multiple-job-on-one-processor pattern. IIE Transactions 30: 433–445CrossRefGoogle Scholar
  121. 121.
    Li C-L, Vairaktarakis G L (2001) Loading and unloading operations in container terminals. Technical Memorandum 745, Case Western Reserve University, Weatherhead School of Management, Department of Operations, http://www.weatherhead.cwru.edu/orom/research/technicalReports/Technical%20Memorandum%20Number%20745.pdf — last check of address: July 30, 2003Google Scholar
  122. 122.
    Lim A (1998) The berth planning problem. Operations Research Letters 22: 105–110CrossRefzbMATHGoogle Scholar
  123. 123.
    Lim J K, Kim K H, Yoshimoto K, Lee J H (2003) A dispatching method for automated guided vehicles by using a bidding concept. OR Spectrum 25: 25–44CrossRefGoogle Scholar
  124. 124.
    Lin W (2000) On dynamic crane deployment in container terminals. Master of philosophy in industrial engineering and engineering management, University of Science and Technology, http://www.isye.gatech.edu/linwq/mthesis.pdf — last check of address: July 30, 2003Google Scholar
  125. 125.
    Linn R J, Liu J-y, Wan Y-w, Zhang C, Murty K G (2003) Rubber tired gantry crane deployment for container yard operation. Computers & Industrial Engineering 45: 429–442CrossRefGoogle Scholar
  126. 126.
    Liu C-I, Jula H, Ioannou P A (2002) Design, simulation, and evaluation of automated container terminals. IEEE Transactions on Intelligent Transportation Systems 3(1): 12–26CrossRefGoogle Scholar
  127. 127.
    Mahoney J H (1985) Intermodal freight transportation. Eno Foundation for Transportation, Westport, CNGoogle Scholar
  128. 128.
    Martinssen D, Steenken D, Wölfer F, Reiners T, Voß S (2001) Einsatz bioanaloger Verfahren bei der Optimierung des wasserseitigen Containerumschlags. In: Sebastian H, Grünert T (eds) Logistik management — supply chain management und e-business, pp 377–388. Teubner, StuttgartGoogle Scholar
  129. 129.
    Mastrolilli M, Fornara N, Gambardella L M, Rizzoli A E, Zaffalon M (1998) Simulation for policy evaluation, planning and decision support in an intermodal container terminal. In: Merkuryev Y, Bruzzone A, Novitsky L (eds) Proceedings of the International Workshop ‘Modeling and Simulation within a Maritime Environment’, Sep 6–8, pp 33–38. Society for Computer Simulation International, Riga, LatviaGoogle Scholar
  130. 130.
    Mattfeld D (2003). The management of transshipment terminals. Habilitation thesis, Universität BremenGoogle Scholar
  131. 131.
    Meersmans P J M (2002) Optimization of container handling systems. Thela Thesis, AmsterdamGoogle Scholar
  132. 132.
    Meersmans P J M, Dekker R (2001) Operations research supports container handling. Technical Report EI 2001-22, Erasmus University Rotterdam, Econometric Institute, http://www.eur.nl/WebDOC/doc/econometrie/feweco20011102151222.pdf — last check of address: Oct 30, 2003Google Scholar
  133. 133.
    Meersmans P J M, Wagelmans A P M (2001) Dynamic scheduling of handling equipment at automated container terminals. Technical Report EI 2001-33, Erasmus University Rotterdam, Econometric Institute, http://www.eur.nl/WebDOC/doc/econometrie/feweco20011128140514.pdf — last check of address: Oct 30, 2003Google Scholar
  134. 134.
    Meersmans P J M, Wagelmans A P M (2001) Effective algorithms for integrated scheduling of handling equipment at automated container terminals. Technical Report EI 2001-19, Erasmus University Rotterdam, Econometric Institute, http://www.eur.nl/WebDOC/doc/econometrie/feweco20010621101333.pdf — last check of address: Oct 30, 2003Google Scholar
  135. 135.
    Merkuryev Y, Tolujew J, Blümel E, Novitsky L, Ginters E, Viktorova E, Merkuryeva G, Pronins J (1998) A modelling and simulation methodology for managing the Riga harbour container terminal. Simulation 71: 84–95Google Scholar
  136. 136.
    Moon K C (2000) A mathematical model and a heuristic algorithm for berth planning. PhD thesis, Pusan National University, http://logistics.ie.pusan.ac.kr/bk21/pdf/kcMoon.pdf — last check of address: July 30, 2003Google Scholar
  137. 137.
    Moorthy R L, Hock-Guan W (2000) Deadlock prediction and avoidance in an AGV system. Master of science, Sri Ramakrishna Engineering College, National University of SingaporeGoogle Scholar
  138. 138.
    Moorthy R L, Hock-Guan W, Wing-Cheong N, Chung-Piaw T (2003) Cyclic deadlock prediction and avoidance for zone-controlled AGV system. International Journal of Production Economics 83(3): 309–324Google Scholar
  139. 139.
    Mosca R, Giribone P, Bruzzone A (1994) Simulation and automatic parking in a training system for container terminal yard management. In: Proceedings of ITEC, pp 65–72Google Scholar
  140. 140.
    Muller G (1995) Intermodal freight transportation, 3rd edn. Eno Foundation for Transportation, Westport, CNGoogle Scholar
  141. 141.
    Murty K G, Liu J, Wan Y-w, Linn R J (2003) A DSS (Decision Support System) for operations in a container terminal. Working paper, University of Michigan, USA, http://www-personal.engin.umich.edu/~murty/terminal-10.pdf — last check of address: Oct 13, 2003Google Scholar
  142. 142.
    Nam K-C, Ha W-I (2001) Evaluation of handling systems for container terminals. Journal of Waterway, Port, Coastal and Ocean Engineering 127(3): 171–175Google Scholar
  143. 143.
    Nam K-C, Kwak K-S, Yu M-S (2002) Simulation study of container terminal performance. Journal of Waterway, Port, Coastal and Ocean Engineering 128(3): 126–132CrossRefGoogle Scholar
  144. 144.
    Narasimhan A, Palekar U S (2002) Analysis and algorithms for the transtainer routing problem in container port operations. Transportation Science 36(1): 63–78CrossRefGoogle Scholar
  145. 145.
    Nevins M R, Macal C M, Love R J, Bragen M J (1998) Simulation, animation and visualization of seaport operations. Simulation 71: 96–106Google Scholar
  146. 146.
    Nishimura E, Imai A, Papadimitriou S (2001) Berth allocation planning in the public berth system by genetic algorithms. European Journal of Operational Research 131: 282–292CrossRefGoogle Scholar
  147. 147.
    NKM Noell Special Cranes (2003) Crane construction. http://www.nkmnoell.com/ — last check of address: July 30, 2003Google Scholar
  148. 148.
    Orient Overseas Container Line — World’s Top 50 Container Ports 2002 vs 2001. http://www.oocl.com/trade news/20030715.htm — last check of address: Oct 13, 2003Google Scholar
  149. 149.
    Ottjes J A, Duinkerken M B, Evers J J M, Dekker R (1996) Robotised inter terminal transport of containers: a simulation study at the Rotterdam port area. In: Proceedings of the 8th European Simulation Symposium (ESS 1996), October 1996, Genua [SCS], http://www.ocp.tudelft.nl/tt/users/duinkerk/papers/gen9610b.pdf — last check of address: July 30, 2003Google Scholar
  150. 150.
    Ottjes J A, Hogedoorn F P A (1996) Design and control of multi-AGV systems: reuse of simulation software. In: Proceedings of the 8th European Simulation Symposium (ESS 1996), October 1996, Genua [SCS], http://www.ocp.tudelft.nl/tt/users/duinkerk/papers/gen9610a.pdf — last check of address: July 30, 2003Google Scholar
  151. 151.
    Ottjes J A, Veeke H P M (1999) Simulation of a new port ship interface concept for inter modal transport. In: Proceedings of the 11th European Simulation Symposium (ESS 1999), October 1999, Erlangen [SCS], http://www.ocp.tudelft.nl/tt/users/duinkerk/papers/erl9910b.pdf — last check of address: July 30, 2003Google Scholar
  152. 152.
    Ottjes J A, Veeke H P M, Duinkerken M B (2002) Simulation studies of robotized multi terminal systems. In: Proceedings International Congress on Freight Transport Automation and Multimodality (FTAM), May 2002, Delft [TRAIL], http://www.ocp.tudelft.nl/tt/users/duinkerk/papers/del0205.pdf — last check of address: July 30, 2003Google Scholar
  153. 153.
    Park K T, Kim K H (2002) Berth scheduling for container terminals by using a subgradient optimization technique. Journal of the Operational Research Society 53: 1054–1062CrossRefGoogle Scholar
  154. 154.
    Park Y-M, Kim K H (2003) A scheduling method for berth and quay cranes. OR Spectrum 25: 1–23CrossRefGoogle Scholar
  155. 155.
    Peterkofsky R I, Daganzo C F (1990) A branch and bound solution method for the crane scheduling problem. Transportation Research-B 24B: 159–172Google Scholar
  156. 156.
    Powell W B, Carvalho T A (1998) Real-time optimization of containers and flatcars for intermodal operations. Transportation Science 32(2): 110–126Google Scholar
  157. 157.
    Preston P, Kozan E (2001) An approach to determine storage locations of containers at seaport terminals. Computers & Operations Research 28: 983–995CrossRefGoogle Scholar
  158. 158.
    Qiu L, HsuW-J (2000) Adapting sorting algorithms for routing AGVs on a mesh-like path topology. Technical Report CAIS-TR-00-28, Nanyang Technological University, School of Applied Science, Centre for Advanced Information SystemsGoogle Scholar
  159. 159.
    Qiu L, Hsu W-J (2000) Conflict-free AGV routing in a bi-directional path layout. In: Proceedings of the 5th International Conference on Computer Integrated Manufacturing (ICCIM 2000), March 28–30, vol 1, pp 392–403. Gintic Institute of Manufacturing Technology, SingaporeGoogle Scholar
  160. 160.
    Qiu L, Hsu W-J (2001) Scheduling of AGVs in a mesh-like path topology. Technical Report CAIS-TR-01-34, Nanyang Technological University, School of Computer Engineering, Centre for Advanced Information SystemsGoogle Scholar
  161. 161.
    Qiu L, Hsu W-J (2001) Scheduling of AGVs in a mesh-like path topology (II): a case study in a container terminal. Technical Report CAIS-TR-01-35, Nanyang Technological University, School of Computer Engineering, Centre for Advanced Information SystemsGoogle Scholar
  162. 162.
    Qiu L, Hsu W-J, Huang S Y, Wang H (2002) Scheduling and routing algorithms for AGVs: a survey. International Journal of Production Research 40: 745–760Google Scholar
  163. 163.
    Rebollo M, Julian V, Carrascosa C, Botti V (2000) A MAS approach for port container terminal management. In: Proceedings of the 3rd Iberoamerican workshop on DAI and MAS, 2000, pp 83–94. Atibaia, Sao Paulo, BrasilGoogle Scholar
  164. 164.
    Reveliotis S A (2000) Conflict resolution in AGV systems. IIE Transactions 32: 647–659CrossRefGoogle Scholar
  165. 165.
    Rizzoli A E, Fornara N, Gambardella L M (1999) A simulation tool for combined rail-road transport in intermodal terminals. In: Proceedings of the conference MODSIM 1999, Modelling and Simulation Society of Australia and New Zealand, ftp://ftp.idsia.ch/pub/luca/papers/modsim99.ps.gz — last check of address: July 30, 2003Google Scholar
  166. 166.
    Rizzoli A E, Gambardella L M, Zaffalon M, Mastrolilli M (1999) Simulation for the evaluation of optimised operations policies in a container terminal. In: HMS99, Maritime & Industrial Logistics Modelling and Simulation, Sep 16–18, Genoa, Italy, ftp://ftp.idsia.ch/pub/luca/papers/hms99.ps.gz — last check of address: July 30, 2003Google Scholar
  167. 167.
    Roach P A, Wilson I D (2002) A genetic algorithm approach to strategic stowage planning for container-ships. Working paper, University of Glamorgan, UKGoogle Scholar
  168. 168.
    Saanen Y, van Meel J, Verbraeck A (2003) The next generation automated container terminals. Technical Report, TBA Nederland/Delft University of TechnologyGoogle Scholar
  169. 169.
    Saanen Y A (2000) Examining the potential for adapting simulation software to enable short-term tactical decision making for operational optimisation. Technical Report, TBA Nederland/Delft University of TechnologyGoogle Scholar
  170. 170.
    Saanen Y A, Verbraeck A, Rijsenbrij J C (2000) The application of advanced simulations for the engineering of logistic control systems. In: Mertins K, Rabe M (eds) The new simulation in production and logistics — prospects, views and attitudes. Proc. 9. ASIM Fachtagung ’simulation in Produktion und Logistik’, pp 217–231. IPK, BerlinGoogle Scholar
  171. 171.
    Scheithauer G (1999) LP-based bounds for the container and multi-container loading problem. International Transactions in Operational Research 6: 199–213CrossRefGoogle Scholar
  172. 172.
    Schneidereit G, Voß S, Parra A, Steenken D (2003) A general pickup and delivery problem for automated guided vehicles with multiloads: a case study. Working paper, University of HamburgGoogle Scholar
  173. 173.
    Sculli D, Hui C F (1988) Three dimensional stacking of containers. Omega 16(6): 585–594CrossRefGoogle Scholar
  174. 174.
    Shabayek A A, Yeung W W (2002) A simulation for the Kwai Chung container terminal in Hong Kong. European Journal of Operational Research 40: 1–11Google Scholar
  175. 175.
    Shen W S, Khoong C M (1995) A DSS for empty container distribution planning. Decision Support Systems 15: 75–82CrossRefGoogle Scholar
  176. 176.
    Shields J J (1984) Container stowage: a computer aided preplanning system. Marine Technology 21: 370–383Google Scholar
  177. 177.
    Sideris A, Boilé M P, Spasovic L N (2002) Using on-line information to estimate container movements for day-to-day marine terminal operation. Working Paper (submitted for consideration for publication in the Journal of Advanced Transportation), New Jersey Institute of Technology, http://www.transportation.njit.edu/nctip/publications/forecastTRB.pdf — last check of address: Oct 30, 2003Google Scholar
  178. 178.
    Steenken D (1992) Fahrwegoptimierung am Containerterminal unter Echtzeitbedingungen. OR Spektrum 14: 161–168CrossRefGoogle Scholar
  179. 179.
    Steenken D (1999) Latest operational experience with satellite based container positioning systems. In: Proceedings IIR-Conference on ‘Container Handling, Automation and Technology’, IIR, London, via http://www.hhla.de/de/Presse/index.jsp — last check of address: Oct 30, 2003Google Scholar
  180. 180.
    Steenken D (2003) Optimised vehicle routing at a seaport container terminal. Orbit 4: 8–14Google Scholar
  181. 181.
    Steenken D, Henning A, Freigang S, Voß S (1993) Routing of straddle carriers at a container terminal with the special aspect of internal moves. OR Spektrum 15: 167–172Google Scholar
  182. 182.
    Steenken D, Winter T, Zimmermann U T (2001) Stowage and transport optimization in ship planning. In: Grötschel M, Krumke S O, Rambau J (eds) Online optimization of large scale systems, pp 731–745. Springer, BerlinGoogle Scholar
  183. 183.
    Taleb-Ibrahimi M, de Castilho B, Daganzo C F (1993) Storage space vs handling work in container terminals. Transportation Research-B 27B: 13–32Google Scholar
  184. 184.
    The Rotterdam Municipal Port Management — The annual report 2001. http://www.portmanagement.com/Images/17_45237.pdf — last check of address: Oct 13, 2003Google Scholar
  185. 185.
    Thiers G F, Janssens G K (1998) A port simulation model as a permanent decision instrument. Simulation 71: 117–125Google Scholar
  186. 186.
    Tolujev J, Merkuryev Y, Blümel E, Nikitins M (1996) Port terminal simulation: state of the art — a survey. Technical Report, Riga: AMCAIRiga Technical UniversityGoogle Scholar
  187. 187.
    Toth P, Vigo D (eds) (2002) The vehicle routing problem. Society for Industrial & Applied Mathematics, SIAM, PhiladelphiaGoogle Scholar
  188. 188.
    Ulusoy G U, Sivrikaya-Şerifoğlu F, Bilge Ü (1997) A genetic algorithm approach to the simultaneous scheduling of machines and automated guided vehicles. Computers & Operations Research 24: 335–351CrossRefGoogle Scholar
  189. 189.
    United Nations Conference on Trade and Development — secretariat (1999) Review of maritime transport. UNCTAD/RMT(99)/1, United Nations Publication, http://www.unctad.org/en/docs/rmt1999_en.pdf — last check of address: Jul 8, 2003Google Scholar
  190. 190.
    United Nations Conference on Trade and Development — secretariat (2000) Review of maritime transport. UNCTAD/RMT(2000)/1, United Nations Publication, http://www.unctad.org/en/docs/rmt2000_en.pdf — last check of address: Jul 8, 2003Google Scholar
  191. 191.
    United Nations Conference on Trade and Development — secretariat (2001) Review of maritime transport. UNCTAD/RMT/2001, United Nations Publication, http://www.unctad.org/en/docs/rmt2001_en.pdf — last check of address: Jul 8, 2003Google Scholar
  192. 192.
    United Nations Conference on Trade and Development — secretariat (2002) Review of maritime transport. UNCTAD/RMT/2002, United Nations Publication, http://www.unctad.org/en/docs/rmt2002_en.pdf — last check of address: Jul 8, 2003Google Scholar
  193. 193.
    Veeke H P M, Ottjes J A (1999) Detailed simulation of the container flows for the IPSI concept. In: Proceedings of the 11th European Simulation Symposium (ESS 1999), October 1999, Erlangen [SCS], http://www.ocp.tudelft.nl/tt/users/duinkerk/papers/erl9910a.pdf — last check of address: July 30, 2003Google Scholar
  194. 194.
    Veeke H P M, Ottjes J A (2002) A generic simulation model for systems of container terminals. In: Proceedings of the 16th European Simulation Multiconference (ESM 2002), June 2002, Darmstadt [SCS], http://www.ocp.tudelft.nl/tt/users/duinkerk/papers/dar0206b.pdf — last check of address: July 30, 2003Google Scholar
  195. 195.
    Vis I F A, Harika I (2004) Comparison of vehicle types at an automated container terminal. OR Spectrum 26: 117–143CrossRefGoogle Scholar
  196. 196.
    Vis I F A, de Koster R (2003) Transshipment of containers at a container terminal: an overview. European Journal of Operational Research 147: 1–16CrossRefGoogle Scholar
  197. 197.
    Vis I F A, de Koster R, Roodbergen K J, Peeters L W P (2001) Determination of the number of automated guided vehicles required at a semi-automated container terminal. Journal of the Operational Research Society 52: 409–417CrossRefGoogle Scholar
  198. 198.
    Volk B (2002). Growth factors in container shipping. http://maritimebusiness.amc.edu.au/papers/AMC3_GRO.pdf — last check of address: July 15, 2003Google Scholar
  199. 199.
    Voß S, Böse J W (2000) Innovationsentscheidungen bei logistischen Dienstleistern — Praktische Erfahrungen in der Seeverkehrswirtschaft. In: Dangelmaier W, Felser W (eds) Das reagible Unternehmen, pp 253–282. HNI, PaderbornGoogle Scholar
  200. 200.
    Wallace A (2001) Application of AI to AGV control — agent control of AGVs. International Journal of Production Research 39(4): 709–726CrossRefzbMATHGoogle Scholar
  201. 201.
    Wilson I D, Roach P A (1999) Principles of combinatorial optimization applied to container-ship stowage planning. Journal of Heuristics 5: 403–418CrossRefGoogle Scholar
  202. 202.
    Wilson I D, Roach P A (2000) Container stowage planning: a methodology for generating computerised solutions. Journal of the Operational Research Society 51: 1248–1255CrossRefGoogle Scholar
  203. 203.
    Wilson I D, Roach P A, Ware J A (2001) Container stowage pre-planning: using search to generate solutions, a case study. Knowledge-Based Systems 14(3–4): 137–145Google Scholar
  204. 204.
    Winter T (2000) Online and real-time dispatching problems. GCA-Verlag, HerdeckeGoogle Scholar
  205. 205.
    Winter T, Zimmermann U (1999) Combinatorial online and real-time optimization. In: Fundamentals — foundations of computer science. Proceedings of the 15th IFIP World Computer Congress, pp 31–48, Österreichische Computer Gesellschaft, ViennaGoogle Scholar
  206. 206.
    Wong J C F, Leung J M Y (2002) On a vehicle routing problem with time windows and stochastic travel times. Technical Report, Department of Systems Engineering and Engineering Management, Chinese University of Hong Kong, Hong Kong, ChinaGoogle Scholar
  207. 207.
    Yang C H, Choi Y S, Ha T Y (2004) Performance evaluation of transport vehicle at automated container terminal using simulation. OR Spectrum 26(2): to appearGoogle Scholar
  208. 208.
    Yun W Y, Choi Y S (1999) Asimulation model for container-terminal operation analysis using an object-oriented approach. International Journal of Production Economics 59: 221–230CrossRefGoogle Scholar
  209. 209.
    Yun W Y, Choi Y S (2003) Simulator for port container terminal using an object oriented approach. Working paper, Pusan National UniversityGoogle Scholar
  210. 210.
    Zaffalon M, Rizzoli A E, Gambardella L M, Mastrolilli M (1998) Resource allocation and scheduling of operations in an intermodal terminal. In: ESS98, 10th European Simulation Symposium and Exhibition, Simulation in Industry, October 26–28th, pp 520–528, Nottingham, UK, ftp://ftp.idsia.ch/pub/luca/papers/ess98.ps.gz — last check of address: July 30, 2003Google Scholar
  211. 211.
    Zhang C, Liu J, Wan Y-w, Murty K G, Linn R J (2003) Storage space allocation in container terminals. Transportation Research-B 37: 883–903Google Scholar
  212. 212.
    Zhang C, Wan Y, Liu J, Linn R J (2002) Dynamic crane deployment in container storage yards. Transportation Research-B 36: 537–555Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Dirk Steenken
    • 1
  • Stefan Voß
    • 2
  • Robert Stahlbock
    • 2
  1. 1.Hamburger Hafen- und Lagerhaus AGIS — Information Systems/Equipment ControlHamburgGermany
  2. 2.Institute of Information Systems (Wirtschaftsinformatik)University of HamburgHamburgGermany

Personalised recommendations