Quo Vadis Quantum Mechanics? pp 299-324

Part of the The Frontiers Collection book series (FRONTCOLL)

Non-Commutative Quantum Geometry: A Reappraisal of the Bohm Approach to Quantum Theory

  • J. Hiley


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bacry, H. and Boon, M. (1987): Boson algebra as a symplectic Clifford algebra, J. Math. Phys. 28, 2693–49MathSciNetGoogle Scholar
  2. Bohm, D. (1952): A suggested interpretation of the quantum theory in terms of hidden variables, I and II, Phys. Rev. 85, 166–179; 85, 180-193ADSMATHMathSciNetCrossRefGoogle Scholar
  3. Bohm, D. (1953): Comments on a letter concerning the causal interpretation of quantum theory, Phys. Rev. 89, 319–20ADSMATHMathSciNetCrossRefGoogle Scholar
  4. Bohm, D. (1980): Wholeness and the Implicate Order, Routledge, LondonGoogle Scholar
  5. Bohm, D and Hiley, B.J. (1987): An ontological basis for quantum theory: I-Non-relativistic particle systems, Phys. Rep. 144, 323–348CrossRefADSMathSciNetGoogle Scholar
  6. Bohm, D. and Hiley, B.J. (1993): The Undivided Universe: An Ontological Interpretation of Quantum Theory, Routledge, London.Google Scholar
  7. Brown, M.R. and Hiley, B.J. (2000): Schrödinger revisited: An algebraic approach, quant-ph/0005026Google Scholar
  8. Carpenter, C.R. (1959): Am. J. Phys. 27, 98–100Google Scholar
  9. Crumeyrolle, A. (1990): Orthogonal and Symplectic Clifford Algebras: Spinor Structures, Kluwer, Dordrecht.MATHGoogle Scholar
  10. Demaret, J. Heller, M. and Lambert, D. (1997): Local and global properties of the world, Foundations of Science 2, 137–176CrossRefGoogle Scholar
  11. Dirac, P.A.M. (1947): The Principles of Quantum Mechanics (3rd and 4th edns. only), p. 9, Oxford University Press, OxfordMATHGoogle Scholar
  12. Dürr, D., Goldstein, S. and Zanghi, N. (1996): Bohmian mechanics as the foundation of quantum mechanics, in: Bohmian Mechanics and Quantum Theory: An Appraisal, ed. by J.T. Cushing, A. Fine and S. Goldstein, Boston Studies in the Philosophy of Science 184, p. 26, Kluwer, DordrechtGoogle Scholar
  13. Emch, G.G. (1972): Algebraic Methods in Statistical Mechanics and Quantum Field Theory, Wiley-Interscience, New YorkMATHGoogle Scholar
  14. Feynman, R.P. (1948): Space-time approach to non-relativistic quantum mechanics, Rev. Mod. Phys. 20, 367–387CrossRefADSMathSciNetGoogle Scholar
  15. Feynman, R.P., Leighton R.B., and Sands, M. (1965): The Feynman Lectures on Physics III, pp. 21–12 to 21-13, Addison-Wesley, Reading, Mass.MATHGoogle Scholar
  16. Frescura, F.A.M., and Hiley, B.J. (1984) Algebras, quantum theory and pre-space, Revista Brasilera de Fisica, Volume Especial, Os 70 anos de Mario Schonberg, 49–86Google Scholar
  17. Gleason, A.M. (1957): Measures on the closed subspaces of Hilbert space, J. Maths. Mechs. 6, 885–93MATHMathSciNetGoogle Scholar
  18. De Gosson, M. (1998): The quantum motion of half-densities and the derivation of Schrödinger’s equation, J. Phys. A Math. Gen. 31, 4239–47CrossRefADSMATHGoogle Scholar
  19. De Gosson, M. (2001): The Principles of Newtonian and Quantum Mechanics, Imperial College Press, LondonMATHCrossRefGoogle Scholar
  20. Guillemin, V. and Sternberg, S. (1978): Geometric Asymptotics, Math. Surveys Monographs 14, Am. Math. Soc., Providence, RIGoogle Scholar
  21. Guillemin, V. and Sternberg, S. (1990): Symplectic Techniques in Physics, Cambridge University Press, CambridgeMATHGoogle Scholar
  22. Heisenberg, W. (1958): Physics and Philosophy: The Revolution in Modern Science, George Allen and Unwin, LondonGoogle Scholar
  23. Hiley, B.J. (2001): Non-commutative geometry, the Bohm interpretation and the mind-matter relationship, Computing Anticipatory Systems: CASYS 2000-Fourth International Conference, ed. by M. Dubois, pp. 77–88, AIPGoogle Scholar
  24. Hiley, B.J. (2001a): A note on the role of idempotents in the extended Heisenberg algebra, in: Implications, ed. by G. Bowden, Scientific Aspects of ANPA 22, 107–121Google Scholar
  25. Hiley, B.J. (2001b): Towards a dynamics of moments: The role of algebraic deformation and inequivalent vacuum states, in: Correlations, ed. by G. Bowden, Proc. ANPA 23, 104–134Google Scholar
  26. Hiley, B.J. (2002): From the Heisenberg picture to Bohm: A new perspective on active information and its relation to Shannon information, in: Proc. Conf. Quantum Theory: Reconsideration of Foundations, ed. by A. Khrennikov, pp. 141–162, Växjö University Press, SwedenGoogle Scholar
  27. Hiley, B.J. (2003): Algebraic quantum mechanics, algebraic spinors and Hilbert space, in: Boundaries, ed. by G. Bowden, Scientific Aspects of ANPA 24, ANPA, London, pp. 149–186Google Scholar
  28. Holland, P. (1993): The Quantum Theory of Motion, Cambridge University Press, CambridgeCrossRefGoogle Scholar
  29. Kauffman, L.H. (2002): Biologic. AMS Contemp. Math. Series 304, 313–340MATHMathSciNetGoogle Scholar
  30. Kauffman, L.H. (2002a): Quantum computing and the Jones polynomial, AMS Contemp. Math. Series 305, 101–137MATHMathSciNetGoogle Scholar
  31. Kochen, K. and Specker, E.P. (1967): J. Math. Mech. 17, 59–87MathSciNetMATHGoogle Scholar
  32. Pauli, W. (1979): Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg, Band I, 1919–1929, ed. by Hermann, A., Meyenn, K.V. and Weisskopf, V.F., p. 347, Springer, BerlinGoogle Scholar
  33. Polkinghorne, J. (2002): A Very Brief Introduction to Quantum Mechanics, Oxford University Press, OxfordGoogle Scholar
  34. Schrödinger, E. (1926): Quantization as an eigenvalue problem, Ann. der Phyk. 79, 361MATHCrossRefGoogle Scholar

Copyright information

© Center for Frontier Sciences 2005

Authors and Affiliations

  • J. Hiley

There are no affiliations available

Personalised recommendations