Non-Commutative Quantum Geometry: A Reappraisal of the Bohm Approach to Quantum Theory

  • J. Hiley
Part of the The Frontiers Collection book series (FRONTCOLL)


Phase Space Double Cover Jacobi Equation Covering Space Symplectic Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bacry, H. and Boon, M. (1987): Boson algebra as a symplectic Clifford algebra, J. Math. Phys. 28, 2693–49MathSciNetGoogle Scholar
  2. Bohm, D. (1952): A suggested interpretation of the quantum theory in terms of hidden variables, I and II, Phys. Rev. 85, 166–179; 85, 180-193ADSzbMATHMathSciNetCrossRefGoogle Scholar
  3. Bohm, D. (1953): Comments on a letter concerning the causal interpretation of quantum theory, Phys. Rev. 89, 319–20ADSzbMATHMathSciNetCrossRefGoogle Scholar
  4. Bohm, D. (1980): Wholeness and the Implicate Order, Routledge, LondonGoogle Scholar
  5. Bohm, D and Hiley, B.J. (1987): An ontological basis for quantum theory: I-Non-relativistic particle systems, Phys. Rep. 144, 323–348CrossRefADSMathSciNetGoogle Scholar
  6. Bohm, D. and Hiley, B.J. (1993): The Undivided Universe: An Ontological Interpretation of Quantum Theory, Routledge, London.Google Scholar
  7. Brown, M.R. and Hiley, B.J. (2000): Schrödinger revisited: An algebraic approach, quant-ph/0005026Google Scholar
  8. Carpenter, C.R. (1959): Am. J. Phys. 27, 98–100Google Scholar
  9. Crumeyrolle, A. (1990): Orthogonal and Symplectic Clifford Algebras: Spinor Structures, Kluwer, Dordrecht.zbMATHGoogle Scholar
  10. Demaret, J. Heller, M. and Lambert, D. (1997): Local and global properties of the world, Foundations of Science 2, 137–176CrossRefGoogle Scholar
  11. Dirac, P.A.M. (1947): The Principles of Quantum Mechanics (3rd and 4th edns. only), p. 9, Oxford University Press, OxfordzbMATHGoogle Scholar
  12. Dürr, D., Goldstein, S. and Zanghi, N. (1996): Bohmian mechanics as the foundation of quantum mechanics, in: Bohmian Mechanics and Quantum Theory: An Appraisal, ed. by J.T. Cushing, A. Fine and S. Goldstein, Boston Studies in the Philosophy of Science 184, p. 26, Kluwer, DordrechtGoogle Scholar
  13. Emch, G.G. (1972): Algebraic Methods in Statistical Mechanics and Quantum Field Theory, Wiley-Interscience, New YorkzbMATHGoogle Scholar
  14. Feynman, R.P. (1948): Space-time approach to non-relativistic quantum mechanics, Rev. Mod. Phys. 20, 367–387CrossRefADSMathSciNetGoogle Scholar
  15. Feynman, R.P., Leighton R.B., and Sands, M. (1965): The Feynman Lectures on Physics III, pp. 21–12 to 21-13, Addison-Wesley, Reading, Mass.zbMATHGoogle Scholar
  16. Frescura, F.A.M., and Hiley, B.J. (1984) Algebras, quantum theory and pre-space, Revista Brasilera de Fisica, Volume Especial, Os 70 anos de Mario Schonberg, 49–86Google Scholar
  17. Gleason, A.M. (1957): Measures on the closed subspaces of Hilbert space, J. Maths. Mechs. 6, 885–93zbMATHMathSciNetGoogle Scholar
  18. De Gosson, M. (1998): The quantum motion of half-densities and the derivation of Schrödinger’s equation, J. Phys. A Math. Gen. 31, 4239–47CrossRefADSzbMATHGoogle Scholar
  19. De Gosson, M. (2001): The Principles of Newtonian and Quantum Mechanics, Imperial College Press, LondonzbMATHCrossRefGoogle Scholar
  20. Guillemin, V. and Sternberg, S. (1978): Geometric Asymptotics, Math. Surveys Monographs 14, Am. Math. Soc., Providence, RIGoogle Scholar
  21. Guillemin, V. and Sternberg, S. (1990): Symplectic Techniques in Physics, Cambridge University Press, CambridgezbMATHGoogle Scholar
  22. Heisenberg, W. (1958): Physics and Philosophy: The Revolution in Modern Science, George Allen and Unwin, LondonGoogle Scholar
  23. Hiley, B.J. (2001): Non-commutative geometry, the Bohm interpretation and the mind-matter relationship, Computing Anticipatory Systems: CASYS 2000-Fourth International Conference, ed. by M. Dubois, pp. 77–88, AIPGoogle Scholar
  24. Hiley, B.J. (2001a): A note on the role of idempotents in the extended Heisenberg algebra, in: Implications, ed. by G. Bowden, Scientific Aspects of ANPA 22, 107–121Google Scholar
  25. Hiley, B.J. (2001b): Towards a dynamics of moments: The role of algebraic deformation and inequivalent vacuum states, in: Correlations, ed. by G. Bowden, Proc. ANPA 23, 104–134Google Scholar
  26. Hiley, B.J. (2002): From the Heisenberg picture to Bohm: A new perspective on active information and its relation to Shannon information, in: Proc. Conf. Quantum Theory: Reconsideration of Foundations, ed. by A. Khrennikov, pp. 141–162, Växjö University Press, SwedenGoogle Scholar
  27. Hiley, B.J. (2003): Algebraic quantum mechanics, algebraic spinors and Hilbert space, in: Boundaries, ed. by G. Bowden, Scientific Aspects of ANPA 24, ANPA, London, pp. 149–186Google Scholar
  28. Holland, P. (1993): The Quantum Theory of Motion, Cambridge University Press, CambridgeCrossRefGoogle Scholar
  29. Kauffman, L.H. (2002): Biologic. AMS Contemp. Math. Series 304, 313–340zbMATHMathSciNetGoogle Scholar
  30. Kauffman, L.H. (2002a): Quantum computing and the Jones polynomial, AMS Contemp. Math. Series 305, 101–137zbMATHMathSciNetGoogle Scholar
  31. Kochen, K. and Specker, E.P. (1967): J. Math. Mech. 17, 59–87MathSciNetzbMATHGoogle Scholar
  32. Pauli, W. (1979): Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg, Band I, 1919–1929, ed. by Hermann, A., Meyenn, K.V. and Weisskopf, V.F., p. 347, Springer, BerlinGoogle Scholar
  33. Polkinghorne, J. (2002): A Very Brief Introduction to Quantum Mechanics, Oxford University Press, OxfordGoogle Scholar
  34. Schrödinger, E. (1926): Quantization as an eigenvalue problem, Ann. der Phyk. 79, 361zbMATHCrossRefGoogle Scholar

Copyright information

© Center for Frontier Sciences 2005

Authors and Affiliations

  • J. Hiley

There are no affiliations available

Personalised recommendations