Microbial Diversity in Soils

  • Bhoopander Giri
  • Pham Huong Giang
  • Rina Kumari
  • Ram Prasad
  • Ajit Varma
Part of the Soil Biology book series (SOILBIOL, volume 3)


Arbuscular Mycorrhizal Fungus Mycorrhizal Fungus Fungal Community Microbial Diversity Arbuscular Mycorrhiza 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander M (1977) Introduction to soil microbiology, 2nd edn. Academic Press, New YorkGoogle Scholar
  2. Alexander M, Clark FE (1965) Nitrifying bacteria. In: Black CA (ed) Methods of soil analysis, part 2. Chemical and microbiological properties. American Society of Agronomy, Madison, Wisconsin, USA, pp 1477–1483Google Scholar
  3. Aspiras RB, Allen ON, Harris RF, Chester G (1971) The role of microorganisms in the stabilization of soil aggregates. Soil Biol Biochem 3:347–353CrossRefGoogle Scholar
  4. Azcon-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens: an overview of the mechanisms involved. Mycorrhiza 6:457–464Google Scholar
  5. Bae KS, Barton LL (1989) Alkaline phosphates and other hydrolyases produced by Cenococcum graniforme, an ectomycorrhizal fungus. Appl Environ Microbiol 55:2511–2516Google Scholar
  6. Bansal M, Chamola BP, Sarwar N, Mukerji KG (2000) Mycorrhizosphere: interaction between rhizosphere microflora and VAM fungi. In: Mukerji KG, Chamola BP, Singh J (eds) Mycorrhizal biology. Kluwer Academic Press/Plenum, New York, pp 143–152Google Scholar
  7. Barber DA, Lynch JM (1997) Microbial growth in the rhizosphere. Soil Biol Biochem 9:305–308Google Scholar
  8. Barea JM (1997) Mycorrhiza/bacteria interactions on plant growth promotion. In: Ogoshi A, Kobayashi L, Homma Y, Kodama F, Kondon N, Akino S (eds) Plant growth-promoting rhizobacteria, present status and future prospects. OECD, Paris, pp 150–158Google Scholar
  9. Barea JM (2000) Rhizosphere and mycorrhiza of field crops. In: Touant A (ed) Biological resource management: connecting science and policy. OECD, INRA Editions and Springer, Berlin Heidelberg, New York, pp 110–125Google Scholar
  10. Barea JM, Andrade G, Bianciotto V, Dowling D, Lohrke S, Bonfante P, O’Gara F, Azcon-Aguilar C (1998) Impact on arbuscular mycorrhiza formation of Pseudomonas strains used as inoculants for the biocontrol of soil-borne plant fungal pathogens. Appl Environ Microbiol 64: 2304–2307Google Scholar
  11. Barea JM, Toro M, Orozco MO, Campos E, Azcon R (2002) The application of isotopic (32P and 15N) dilution techniques to evaluate the interactive effect of phosphate solublizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutri Cycl Agroecosyst 65:35–42Google Scholar
  12. Barns SM, Delwiche CF, Palmer JD, Pace NR (1996) Perspectives on archaeal diversity, thermophily and monophily from environmental rRNA sequences. Proc Natl Acad Sci USA 93:9188–9193CrossRefGoogle Scholar
  13. Baudoin E, Benizri E, Guckert A (2001) Metabolic structure of bacterial communities from distinct maize rhizosphere compartments. Eur J Soil Biol 37:85–93CrossRefGoogle Scholar
  14. Baudoin E, Benizri E, Guckert A (2002) Impact of growth stages on bacterial community structure along maize roots by metabolic and genetic fingerprinting. Appl Soil Ecol 19:135–145CrossRefGoogle Scholar
  15. Beare MH, Parmelee RW, Hendrix PF, Cheng W, Coleman DC, Crossley DA Jr (1992) Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems. Ecol Microorg 62: 569–591Google Scholar
  16. Beare MH, Cabrera ML, Hendrix PF, Coleman CD (1994) Aggregate-protected and unprotected pools of organic matter in conventional and no-tillage soils. Soil Sci Soc Am J 57:392–399Google Scholar
  17. Beare MH, Coleman DC, Crossley DA Jr, Hendrix PF, Odum EP (1995) A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. Plant Soil 170:5–22CrossRefGoogle Scholar
  18. Benizri E, Baudin E, Guckert A (2001) Root colonization by plant growth promoting Rhizobacteria. Biocont Sci Technol 5(11):557–574Google Scholar
  19. Benizri E, Dedourge O, Di Battista-Leboeuf C, Nguyen CS, Piutti, Guckert A (2002) Effect of maize rhizodeposits on soil microbial community structure. Appl Soil Ecol 21:261–265CrossRefGoogle Scholar
  20. Benson DR (1988) The genus Frankia: actinimycetes symbionts of plants. Microb Sci 5:9–12Google Scholar
  21. Berreck M, Haselwandter K (2001) Effect of the arbuscular mycorrhizal symbiosis upon uptake of caesium and other cations by plants. Mycorrhiza 10:275–280CrossRefGoogle Scholar
  22. Blair JM, Parmelee RW, Beare MH (1990) Decay rates, nitrogen fluxes and decomposer communities of single-and mixed species foliar litter. Ecology 7:1976–1985Google Scholar
  23. Boddy L, Walting R, Lycon AJE (eds) (1988) Fungi and ecological disturbance. Proc R Soc Edinb 94:1–188Google Scholar
  24. Bolton H Jr, Fredrikson JK, Elliot LE (1993) Microbiology of the rhizosphere. In: Metting FB Jr (ed) Soil microbial ecology. Dekker, New York, pp 27–63Google Scholar
  25. Borneman J, Skroach PW, O’sullivan EW, Palus JA, Rumjanek NG, Jansen JL, Nienhuis J, Triplett EW (1996) Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol 62: 1935–1943Google Scholar
  26. Bowen GD, Rovira AD (1991) The rhizosphere, the hidden half. In:Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Dekker, New York, pp 641–669Google Scholar
  27. Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–10Google Scholar
  28. Bruck TD (1987) The study of microorganisms in situ: progress and problems. In: Fletcher M, Gray TRG, Jones JG (eds) Ecology of microbial communities. SGM symposium 41. Cambridge Univ Press, Cambridge, pp 1–17Google Scholar
  29. Bruns RG, Slatar JH (1982) Experimental microbial ecology. Blackwell, Oxford, 683 ppGoogle Scholar
  30. Burr JJ, Caesar A (1984) Beneficial plant bacteria. CRC Crit Rev Plant Sci 21:1–20Google Scholar
  31. Capone DG (2000) The marine nitrogen cycle. In: Kirchman D (ed) Microbial ecology of the ocean. Wiley-Liss, New York, pp 455–493Google Scholar
  32. Chalot M, Javelle A, Blaudez D, Lambilliote R, Cooke R, Sentenac H, Wipf D, Botton B (2002) An uptake on nutrient transport processes in ectomycorrhizas. Plant Soil 244:165–175CrossRefGoogle Scholar
  33. Christensen M (1989) A view of fungal ecology. Mycologia 81: 1–19Google Scholar
  34. Clarholm M (1985) Possible roles of roots, bacteria, protozoa and fungi in supplying nitrogen to plants. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil. Blackwell, Oxford, pp 297–317Google Scholar
  35. Coleman DC, Crossley DA Jr, Beare MH, Hendrix PF (1988) Interactions of organisms at root/soil and litter/soil interfaces in terrestrial ecosystems. Agric Ecosyst Environ 24:117–134Google Scholar
  36. Cromack K, Caldwell BA (1992) The role of fungi in litter decomposition and nutrient cycling. In: Carroll GC, Wicklow DT (eds) The fungal community, its organization and role in the ecosystem. Dekker, New York, pp 601–618Google Scholar
  37. DeLong EF, Pace NR (2001) Environmental diversity of bacteria and archaea. Syst Biol 50:470–478CrossRefGoogle Scholar
  38. Devereux R, Stahl DA (1993) Phylogeny of sulfate-reducing bacteria and a perspective for analysing their natural communities. In: Odom JM, Singleton R Jr (eds) Sulfate-reducing bacteria: contemporary perspectives. Springer, Berlin Heidelberg New York, pp 131–160Google Scholar
  39. Dighton J, Boddy L (1989) Role of fungi in nitrogen, phosphorous and sulphur cycling in temperate forest ecosystems. In: Boddy L, Marchent R, Read DJ (eds) Nitrogen, phosphorus and sulphur utilization by fungi. Cambridge Univ Press, Cambridge, pp 269–298Google Scholar
  40. Duineveld BM, Kowalchuk GA, Keijzer A, van Elsas JD, van Veen JA (2001) Analysis of bacterial communities in the rhizosphere of Chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragment coding for16S rRNA. Appl Environ Microbiol 67:172–178CrossRefGoogle Scholar
  41. Evans DG, Miller MH (1988) Vesicular-arbuscular mycorrhizas and the soil-disturbanceinduced reduction of nutrient absorption in maize. New Phytol 110:67–74Google Scholar
  42. Ezawa T, Smith SE, Smith FA (2002) P metabolism and transport in AM fungi. Plant Soil 244:221–230CrossRefGoogle Scholar
  43. Fitter AH (1985) Functional significance of root morphology and root system architecture. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil. Blackwell, Oxford, pp 87–106Google Scholar
  44. Foster RC (1988) Microenvironment of soil microorganisms. Biol Fertil Soils 6:189–203CrossRefGoogle Scholar
  45. Franklin JF (1993) Preserving biodiversity: species, ecosystems, or landscapes? Ecol Appl 3:200–205Google Scholar
  46. Friese CF, Allen MF (1993) The interaction of harvester ants and vesicular arbuscular mycorrhizal fungi in a patchy semi-arid environment: the effects of mound structure on fungal dispersion and establishment. Funct Ecol 7:13–20Google Scholar
  47. Gaskins MH, Albrecht SL, Hubell DH (1984) Rhizosphere bacteria and their use to increase plant productivity: a review. Agric Ecosyst Environ 12:99–116Google Scholar
  48. Giri B, Kapoor R, Mukerji KG (2001) VAM/VA mycorrhizal technology in establishment of plants under salinity stress conditions. In: Mukerji KG, Manoharachari C, Chamola BP (eds) Techniques in mycorrhizal studies. Kluwer, Dordrecht, pp 51–85Google Scholar
  49. Gochenauer SE (1981) Responses of soil fungal communities to disturbance. In: Wicklow DT, Carroll GC (eds) The fungal community: its organization and role in the ecosystem. Dekker, New York, pp 459–479Google Scholar
  50. Gryndler M (2000) Interactions of arbuscular mycorrhizal fungi with other soil microorganisms. In: Kapulink Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Dordrecht, pp 239–262Google Scholar
  51. Hamilton WE, Dindal DL (1983) The vermisphere concept: earthworm activity and sewage sludge. Biocycle 24:54–55Google Scholar
  52. Hawksworth DL (1991a) The biodiversity of microorganisms and invertibrates: its role in sustainable agriculture. CAB International/Redwood Press, Melksham, UK, 302 ppGoogle Scholar
  53. Hawksworth DL (1991b) The fungal dimension of diversity: magnitude, significance, and conservation. Mycol Res 95:641–655CrossRefGoogle Scholar
  54. Herbert R (1999) Nitrogen cycling in coastal marine ecosystems. FEMS Microbial Rev 23:563–590CrossRefGoogle Scholar
  55. Herman RP, Provencio KR, Torrez RJ, Seager GM (1993) Effect of water and nitrogen additions on free-living nitrogen fixer populations in desert grass root zones. Appl Environ Microbiol 59:3021–3026Google Scholar
  56. Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67Google Scholar
  57. Hurst CJ (2002) An introduction to viral taxonomy and the proposal of Akamara, a potential domain for the genomic acellular agents. In: Hurst CJ (ed) Viral ecology. Academic Press, San Diego, pp 41–62Google Scholar
  58. Jeffries P (1997) Mycoparasitism. In: Wicklow DT, Sodertom BE (eds) Environmental and microbial relationship. The Mycota IV. Springer, Berlin Heidelberg New York, pp 95–113Google Scholar
  59. Jennings DH (1995) The physiology of fungal nutrition. Cambridge Univ Press, CambridgeGoogle Scholar
  60. Jones JW (1991) Diversity and physiology of methanogens. In: Rogers JE, Whitman WB (eds) Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes. American Society of Microbiology, Washington, DC, pp 39–35Google Scholar
  61. Jorgensen BB (1982) Ecology of the bacteria of the sulfur cycle with special reference to anoxic-oxic interface environments. Philos Trans R Soc Lond 298:543–561Google Scholar
  62. Jorgensen BB (1994) Sulfate reduction and thiosulfate transformations in a cyanobacterial mat during a diel oxygen cycle. FEMS Microbiol Ecol 13:303–312Google Scholar
  63. Kaplan WA (1983) Nitrification. In: Carpenter EJ, Capone DG (eds) Nitrogen in the marine environment. Academic Press, New York, pp 139–190Google Scholar
  64. Kapoor R, Giri B, Mukerji KG (2002) Soil factors in relation to distribution and occurrence of vesicular arbuscular mycorrhiza. In: Mukerji KG, Manoharachari C, Chamola BP (eds) Techniques in mycorrhizal studies. Kluwer, Dordrecht, pp 51–85Google Scholar
  65. Killham K (1987) Heterotrophic nitrification. In: Prosser JI (ed) Nitrification. Society of General Microbiology, Spec Public IRL Press, Oxford, pp 117–126Google Scholar
  66. Kjoller A, Struwe S (1982) Microfungi in ecosystems: fungal occurrence and activity in litter and soil. Oikos 39:391–422Google Scholar
  67. Kluge M, Gehrig H, Mollenhauer D, Schnepf E, Schubler A (1997) News on Geosiphon pyriforme, an endocytobiotic consortium of a fungus with a cyanobacterium. In: Schenk HEA, Herrmann R, Jeon KW, Muller NE, Schwemmler W (eds) Eukaryotism and symbiosis. Springer, Berlin Heidelberg New York, pp 469–476Google Scholar
  68. Kluge M, Mollenhauer D, Wolf E, Schüßler A (2002) The Nostoc — Geosiphon endocytobiosis. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 19–30Google Scholar
  69. Koch B, Kaldorf M, Rexer KH, Kost G, Varma A (2004) Patterns of interaction between Populus esch5 and Piriformospora indica: a transition from mutualism to antagonism. Plant Biol (in press)Google Scholar
  70. Kumari R, Yadav HK, Bhoon YK, Varma A (2003) Colonization of Cruciferous plants by Piriformospora indica. Curr Sci 85: 1672–1674Google Scholar
  71. Kyrpides NC, Olsen GJ (1999) Archaeal and bacterial hyperthermophiles: horizontal gene exchange or common ancestry? Trends Genet 15: 298–299CrossRefGoogle Scholar
  72. Lakhanpal TN (2000) Ectomycorrhiza-an overview. In: Mukerji KG, Chamola BP, Singh J (eds) Mycorrhizal biology. Kluwer/Plenum, New York, pp 101–118Google Scholar
  73. Lavelle P, Barois I, Martin A, Zaidi Z, Schaefer R (1989) Management of earthworm populations in agro-ecosystems: a possible way to maintain soil quality? In: Clarholm M, Bergstrom I (eds) Ecology of arable land. Kluwer, Dordrecht, pp 109–122Google Scholar
  74. Lee KE, Foster RC (1991) Soil fauna and soil structure. Aust J Soil Res 29:745–775CrossRefGoogle Scholar
  75. Liesack W, Stackebrandt E (1992) Occurrence of novel groups of the domain bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J Bacteriol 174:5072–5078Google Scholar
  76. Linderman RG (1988) Mycorrhizal infection with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78: 366–371Google Scholar
  77. Lobry de Bruyn LA, Conacher AJ (1990) The role of termites and ants in soil modification: a review. Aust J Soil Res 28:55–93Google Scholar
  78. Loper JE, Haack C, Schroth MN (1985) Population dynamics of soil Pseudomonads in the rhizosphere of potato (Solanum tuberosum L.). Appl Environ Microbiol 49:416–422Google Scholar
  79. Lovley DR, Phillips (1994) Novel processes for anaerobic sulfate production from elemental sulfate by sulfur-reducing bacteria. Appl Environ Microbiol 60:2394–2399Google Scholar
  80. Lynch JM (1987a) Microbial interactions in the rhizosphere. Soil Microorg 30:33–41Google Scholar
  81. Lynch JM (1987b) Soil biology — accomplishments and potential. Soil Sci Soc Am J 51:1409–1412CrossRefGoogle Scholar
  82. Lynch JM (1990) The rhizosphere. Wiley, New YorkGoogle Scholar
  83. Lynch JM, Harper SHT (1985) The microbial upgrading of straw for agricultural use. Philos Trans R Soc Lond 310:221–226Google Scholar
  84. Lynch JM, Hobbie JB (1988) Microorganisms in action: concepts and application in microbial ecology. Blackwell, Oxford, 363 ppGoogle Scholar
  85. Meyer JR, Linderman RG (1986) Selective influences on population of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biol Biochem 18:191–196Google Scholar
  86. Mehta AP, Torma AE, Murr LE (1979) Effect of environmental parameters on the efficiency of biodegradation of basalt rock by fungi. Biotechnol Bioeng 21:875–885CrossRefGoogle Scholar
  87. Metting B (1988) Micro-algae in agriculture. In: Borowitzka MA, Borowitzka LA (eds) Micro-algal biotechnology. Cambridge Univ Press, Cambridge, pp 288–304Google Scholar
  88. Mollenhauer D, Mollenhauer R, Kluge M (1996) Studies on initiation and development of the partner association in Geosiphon pyreforme(Kuiz.) v. Wettstein, a unique endocytobiotic system of a fungus (Glomales) and the cyanobacterium Nostoc punctiforme (Kuiz.). Hariot Protoplasma 139: 3–9Google Scholar
  89. Moreno J, Gonsalez Loper J, Vela GR (1986) Survival of Azotobacter spp. in dry soils. Appl Environ Microbiol 51:123–125Google Scholar
  90. Mukerji KG, Mandeep K, Varma A (1997) Mycorrhizosphere microorganisms: screening and evaluation. In: Varma A (ed) Mycorrhiza manual. Springer, Berlin Heidelberg New York, pp 85–98Google Scholar
  91. Nannipieri P, Sastre I, Landi L, Lobo MC, Pietramellara G (1996) Determination of extracellular neutral phosphomonoesterase activity in soil. Soil Biol Biochem 28:107–112CrossRefGoogle Scholar
  92. Nehl DB, Allen SJ, Brown JF (1996) Deleterious rhizosphere bacteria: an integrating prospective. Appl Soil Ecol 5:1–20Google Scholar
  93. Newman EI (1985) The Rhizosphere: carbon sources and microbial populations. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil, plants, microbes and animals. Blackwell, Oxford, pp 107–121Google Scholar
  94. Oades JM (1993) The role of biology in the formation, stabilization and degradation of soil structure. Geoderma 56:377–400CrossRefGoogle Scholar
  95. Oades JM, Waters AG (1991) Aggregate hierarchy in soils. Aust J Soil Res 29:815–828CrossRefGoogle Scholar
  96. Pant HK, Warman PR (2000) Enzyme hydrolysis of soil organic phosphorus by immobilized phosphatases. Biol Fertil Soils 30:306–311CrossRefGoogle Scholar
  97. Paul EA, Clark FE (1989) Soil microbiology and biochemistry. Academic Press, San DiegoGoogle Scholar
  98. Payne JW (1981) Denitrification. Wiley, New YorkGoogle Scholar
  99. Pennisi E (1999) Is it time to uproot the tree of life? Science 284:1305–1307Google Scholar
  100. Pham GH, Singh A, Malla R, Kumari R, Prasad R, Sachdev M, Luis P, Kaldorf M, Tatjana P, Harrmann S, Hehl S, Declerck S, Buscot F, Oelmuller R, Rexer KH, Kost G, Varma A (2004a) Interaction of P. indica with other microorganisms and plants. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Berlin Heidelberg New York pp 237–265Google Scholar
  101. Pham GH, Kumari R, Singh A, Sachdev M, Prasad R, Kaldorf M, Buscot F, Oelmuller R, Tatjana P, Weiss M, Hampp R, Varma A (2004b) Axenic cultures of Piriformospora indica. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Berlin Heidelberg New York, pp 593–616Google Scholar
  102. Postgate JR (1987) Nitrogen fixation, 2nd edn. Arnold, LondonGoogle Scholar
  103. Prescott LM, Harley JP, Klein DA (1996) The diversity of the microbial world. In: Prescott LM, Harley JP, Klein DA (eds) Microbiology. WCB Publishers, Dubuque, IowaGoogle Scholar
  104. Quastel JH (1995) Soil metabolism. Proc R Soc 143:159–179Google Scholar
  105. Redecker D, Morton JB, Bruns TD (2000) Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Mol Phylogenet Evol 14:276–284Google Scholar
  106. Reid JB, Goss JM (1981) Effects of living roots of different plant species on the aggregate stability of two arable soils. J Soil Sci 52: 521–541Google Scholar
  107. Salyers AA, Whitt DD (2001) Diversity and history of microorganisms. In: Salyers AA, Whitt DD (eds) Microbiology: diversity, diseases and the environment. Fitzgerald Science Press, Bethesda, Maryland, pp 19–32Google Scholar
  108. Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453CrossRefGoogle Scholar
  109. Schimel JP, Firestone MK, Killham K (1984) Identification of heterotrophic nitrification in a Sieerrs forest soil. Appl Environ Microbiol 48:802–806Google Scholar
  110. Schüßler A (2002) Molecular phylogeny, taxonomy, and evolution of Geosiphon pyriforme and arbuscular mycorrhizal fungi. Plant Soil 244:75–83Google Scholar
  111. Schüßler A, Kluge M (2001) Geosiphon pyriforme, an endocytosymbiosis between fungus and cyanobacteria, and its meaning as a model system for arbuscular mycorrhizal research. In: Hock B (ed) The Mycota IX. Springer, Berlin Heidelberg New York, pp 151–161Google Scholar
  112. Schüßler A, Wolf E, Kluge M (2001) Geosiphon pyriforme and Nostoc punctiforme: a unique symbiosis with implications for mycorrhizal research. ISS Symb Int 1:4–5Google Scholar
  113. Seastedt TR (1984) The role of microarthropods in decomposition and mineralization processes. Annu Rev Entomol 29:25–46CrossRefGoogle Scholar
  114. Shaw C, Pawluk S (1986) The development of soil structure by Octolasion tyrtaeum, Aporrectodea turgida and Lumbricus terrestris in parent materials belonging to different textural classes. Pedobiologia 29:327–339Google Scholar
  115. Singh An, Singh A, Kumari M, Rai MK, Varma A (2003) Biotechnology importance of Piriformospora indica — a novel symbiotic mycorrhiza-like fungus: an overview. Ind J Biotech 2:65–75Google Scholar
  116. Slater JH (1988) Microbial population and community dynamics. In: Lunch JM, Hobbie JB (eds) Microorganisms in action: concepts and application in microbial ecology. Blackwell, Oxford, pp 51–74Google Scholar
  117. Smiles DE (1988) Aspects of the physical environment of soil organisms. Biol Fertil Soils 6:204–215CrossRefGoogle Scholar
  118. Sollins P, Cromack K Jr, Li CY, Fogel R (1981) Role of low-molecular weight organic acids in the inorganic nutrition of fungi and higher plants. In: Carroll GC, Wicklow DT (eds) The fungal community, its organization and role in ecosystem. Dekker, New YorkGoogle Scholar
  119. Srivastava D, Kapoor R, Srivastava SK, Mukerji KG (1996) Vesicular arbuscular mycorrhiza: an overview. In: Mukerji KG (ed) Concepts in mycorrhizal research. Kluwer, Dordrecht, pp 1–39Google Scholar
  120. Stanier RY, Ingraham JL, Wheelis ML, Painter PR (1986) The microbial world. Prentice-Hall, Englewood CliffsGoogle Scholar
  121. Subba Roa NS (1997) Soil microbiology. IBH Publ, OxfordGoogle Scholar
  122. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems, studies in ecology, vol 5. Blackwell, Oxford, UKGoogle Scholar
  123. Tabatabai MA (1982) Soil enzymes. In: Page AL, Miller Rh, Keeney DR Methods of soil analysis, part 2. Chemical and microbiological properties — Agronomy monograph, No 9, 2nd edn. Wisconsin, pp 903–947Google Scholar
  124. Tate RL II (1987) Soil organic matter: biological and ecological effects. Wiley, New York, 291 ppGoogle Scholar
  125. Tate RL III (1995) Soil microbiology. Wiley, New YorkGoogle Scholar
  126. Tarafdar JC, Rao AV (1996) Contribution of Aspergillus strains to acquisition of phosphorus by wheat (Triticum aestivum L.) and chick pea (Cicer arietinum Linn.) grown in a loamy sand soil. Appl Soil Ecol 3:109–114CrossRefGoogle Scholar
  127. Van Niel EWJ, Gottschal JC (1998) Oxygen consumption by Desulfovibrio strains with and without polyglucose. Appl Environ Microbiol 64:1034–1039Google Scholar
  128. Vannier G (1987) The porosphere as an ecological medium emphasized in Professor Gilarov’s work on soil animal adaptations. Biol Fertil Soil 3:39–44Google Scholar
  129. Varma A, Verma S, Sudha Sahay N, Britta B, Franken P (1999) Piriformospora indica — a cultivable plant growth promoting root endophyte with similarities to arbuscular mycorrhizal fungi. Appl Environ Microbiol 65:2741–2744Google Scholar
  130. Varma A, Singh A, Sudha Sahay N, Sharma J, Roy A, Kumari M, Rana D, Thakran S, Deka D, Bharti K, Franken P, Hurek T, Blechert O, Rexer K-H, Kost G, Hahn A, Hock B, Maier W, Walter M, Strack D, Kranner I (2001) Piriformospora indica: A cultivable mycorrhizalike endosymbiotic fungus. In: Hock B (ed) The Mycota IX. Springer, Berlin Heidelberg New York, pp 123–150Google Scholar
  131. Verma S, Varma A, Rexer K-H, Hassel A, Kost G, Sarbhoy A, Bisen P, Buetehorn P, Franken P (1998) Piriformospora indica gen. nov., a new root-colonizing fungus. Mycologia 90:895–909Google Scholar
  132. Visscher PT, Vandenede FP, Schaub BEM, van Gemerden H (1992) Competition between anoxygenic phototrophic bacteria and colorless sulfur bacteria in a microbial mat. FEMS Microbial Ecol 101:51–58Google Scholar
  133. Von Wettstein F (1915) Geosiphon Fr. v. Wettst., eine neue, interessante siphone. Österr Bot Z 65:145–156Google Scholar
  134. Vosatka M, Gryndler M (1999) Treatment with culture fractions from Pseudomonas putida modifies the development of Glomus fistulosum mycorrhiza and the response of potato and maize plants to inoculation. Appl Soil Ecol 11:245–251Google Scholar
  135. Wainwright M (1992) The impact of fungi on environmental biogeochemistry. In: Carroll GC, Wicklow DT (eds) The fungal community, its organization and role in the ecosystem. Dekker, New York, pp 601–618Google Scholar
  136. Wicklow MC, Billen WB, Denison WC (1974) Comparison of soil microfungi in 40 year-old stands of pure alder, pure conifer, and alder-conifer mixtures. Soil Biol Biochem 6:73–78CrossRefGoogle Scholar
  137. Widdel F, Hansen TA (1991) The dissimilatory sulfate and sulfur-reducing bacteria. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, Berlin Heidelberg New York, pp 583–634Google Scholar
  138. Wieland G, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere, and rhizosphere in response to crop species, soil type, and crop development. Appl Environ Microbiol 67: 5849–5854CrossRefGoogle Scholar
  139. Wilson EO (1988) Biodiversity. National Academy Press, Washington, DCGoogle Scholar
  140. Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271Google Scholar
  141. Wolters V (1991) Soil invertebrates — effects on nutrient turnover and soil structure: a review. Z Pflanzenern Bodenkd 154:389–402Google Scholar
  142. Wood M (1989) Soil biology. Chapman and Hall, LondonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Bhoopander Giri
    • 1
    • 2
  • Pham Huong Giang
    • 3
  • Rina Kumari
    • 4
  • Ram Prasad
    • 4
  • Ajit Varma
    • 1
    • 2
  1. 1.School of Life ScienceJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Amity Institute of Herbal and Microbial Studies, Sector 125NoidaIndia
  3. 3.International Centre for Genetic Engineering and Biotechnology (UNO, Triesta, Italy)New DelhiIndia
  4. 4.Ch. Charan Singh UniversityUttar PradeshIndia

Personalised recommendations