Microorganisms in Toxic Metal-Polluted Soils

  • Geoffrey M. Gadd
Part of the Soil Biology book series (SOILBIOL, volume 3)


Arbuscular Mycorrhizal Fungus Toxic Metal Ectomycorrhizal Fungus Appl Environ Desulfovibrio Desulfuricans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson P, Davidson CM, Littlejohn D, Ure AM, Shand CA, Cheshire MV (1997) The translocation of caesium and silver by fungi in some Scottish soils. Comm Soil Sci Plant Anal 28:635–650Google Scholar
  2. Aoyama M, Nagumo T (1997a) Effects of heavy metal accumulation in apple orchard soils on microbial biomass and microbial activities. Soil Sci Plant Nutrition 43:601–612Google Scholar
  3. Aoyama M, Nagumo T (1997b) Comparison of the effects of Cu, Pb, and As on plant residue decomposition, microbial biomass, and soil respiration. Soil Sci Plant Nutr 43:613–622Google Scholar
  4. Aubert C, Lojou E, Bianco P, Rousset M, Durand M-C, Bruschi M, Dolla A (1998) The Desulfuromonas acetoxidans triheme cytochrome c7 produced in Desulfovibrio desulfuricans retains its metal reductase activity. Appl Environ Microbiol 64:1308–1312Google Scholar
  5. Baath E, Diaz-Ravina M, Frostegard A, Campbell CD (1998) Effect of metal-rich sludge amendments on the soil microbial community. Appl Environ Microbiol 64:238–245Google Scholar
  6. Baker AJM, Brooks RR (1989) Terrestrial higher plants which accumulate metallic elements — a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126Google Scholar
  7. Bakken LR, Olsen RA (1990) Accumulation of radiocaesium in fungi. Can J Microbiol 36:704–710CrossRefGoogle Scholar
  8. Balistrieri LS, Chao TT (1987) Selenium adsorption by goethite. Soil Sci Soc Am J 51:1145–1151CrossRefGoogle Scholar
  9. Barnes LJ, Janssen FJ, Sherren J, Versteegh JH, Koch RO, Scheeren PJH (1992) Simultaneous removal of microbial sulphate and heavy metals from wastewater. Trans Inst Mining Metall 101:183–190Google Scholar
  10. Beech IB, Cheung CWS (1995) Interactions of exopolymers produced by sulphate-reducing bacteria with metal ions. Int Biodeter Biodeg 35: 59–72Google Scholar
  11. Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony and bismuth. Micro Mol Bio Rev 66:250–271Google Scholar
  12. Beveridge TJ (1989) Role of cellular design in bacterial metal accumulation and mineralization. Annu Rev Microbiol 43:147–171CrossRefGoogle Scholar
  13. Beveridge TJ, Doyle RJ (1989) Metal ions and bacteria. Wiley, New YorkGoogle Scholar
  14. Beveridge TJ, Meloche JD, Fyfe WS, Murray RGE (1983) Diagenesis of metals chemically complexed to bacteria: laboratory formation of metal phosphates, sulfides and organic condensates in artificial sediments. Appl Environ Microbiol 45:1094–1108Google Scholar
  15. Birch L, Bachofen R (1990) Complexing agents from microorganisms. Experientia 46:827–834CrossRefGoogle Scholar
  16. Blaudez D, Jacob C, Turnau K, Colpaert JV, Ahonen-Jonnarth U, Finlay R, Botton B, Chalot M (2000) Differential responses of ectomycorrizal fungi to heavy metals in vitro. Mycol Res 104:1366–1371CrossRefGoogle Scholar
  17. Bode H-P, Dumschat M, Garotti S, Fuhrmann GF (1995) Iron sequestration by the yeast vacuole. A study with vacuolar mutants of Saccharomyces cerevisiae. Eur J Biochem 228:337–342CrossRefGoogle Scholar
  18. Bogomolova EV, Vlasov Yu D, Panina LK (1998) On the nature of the microcolonial morphology of epilithic black yeasts Phaeococcomyces de Hoog. Doklady Russian Acad Sci 363:707–709Google Scholar
  19. Borst-Pauwels GWFH (1989) Ion transport in yeast including lipophilic ions. Methods Enzymol 174:603–616Google Scholar
  20. Bosecker K (1997) Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20:591–604CrossRefGoogle Scholar
  21. Bousserrhine N, Gasser UG, Jeanroy E, Berthelin J (1999) Bacterial and chemical reductive dissolution of Mn-, Co-Cr-, and Al-substituted geothites. Geomicrobiol J 16:245–258CrossRefGoogle Scholar
  22. Bradley R, Burt AJ, Read DJ (1981) Mycorrhizal infection and resistance to heavy metals. Nature 292:335–337Google Scholar
  23. Bradley B, Burt AJ, Read DJ (1982) The biology of mycorrhiza in the Ericaceae. VIII. The role of mycorrhizal infection in heavy metal resistance. New Phytol 91:197–209Google Scholar
  24. Bridge TAM, White C, Gadd GM (1999) Extracellular metal-binding activity of the sulphate reducing bacterium Desulfococcus multivorans. Microbiol 145:2987–2995Google Scholar
  25. Brookes PC, McGrath SP (1984) Effects of metal toxicity on the size of the soil microbial biomass. J Soil Sci 35:341–346Google Scholar
  26. Brown NL, Lee BTO, Silver S (1994) Bacterial transport of and resistance to copper. In: Sigel H, Sigel A (eds) Metal ions in biological systems, vol 30. Dekker, New York, pp 405–434Google Scholar
  27. Brown NL, Barrett SR, Camakaris J, Lee BTO, Rouch DA (1995) Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol Microbiol 17: 1153–1166CrossRefGoogle Scholar
  28. Brown GE, Foster AL, Ostergren JD (1999) Mineral surfaces and bioavailability of heavy metals: a molecular-scale perspective. Proc Natl Acad Sci USA 96:3388–3395Google Scholar
  29. Burford EP, Kierans M, Gadd GM (2003a) Geomycology: fungi in mineral substrata. Mycologist 17:98–107CrossRefGoogle Scholar
  30. Burford EP, Fomina M, Gadd GM (2003b) Fungal involvement in bioweathering and io-transformation of rock aggregates and minerals. Mineral Mag 67:1127–1155CrossRefGoogle Scholar
  31. Burgstaller W, Schinner F (1993) Leaching of metals with fungi. J Biotechnol 27:91–116CrossRefGoogle Scholar
  32. Cairney JWG, Meharg AA (1999) Influences of anthropogenic pollution on mycorrhizal fungal communities. Environ Poll 106:169–182CrossRefGoogle Scholar
  33. Cevnik M, Jurc M, Vodnik D (2000) Filamentous fungi associated with the fine roots of Erica herbacea L. from the area influenced by the Zerjav lead smelter (Slovenia). Phyton Ann Rei Bot 40:61–64Google Scholar
  34. Chander K, Brookes PC (1991) Effects of heavy metals from past applications of sewage sludge on microbial biomass and organic matter accumulation in a sandy loam and silty loam UK soil. Soil Biol Biochem 23:927–932Google Scholar
  35. Chander K, Dyckmans J, Hoeper H, Joergensen RG, Raubuch M (2001a) Long-term effects on soil microbial properties of heavy metals from industrial exhaust deposition. J Plant Nutr Soil Sci 164:657–663CrossRefGoogle Scholar
  36. Chander K, Dyckmans J, Joergensen RG, Meyer B, Raubuch M (2001b) Different sources of heavy metals and their long-term effects on soil microbial properties. Biol Fertil Soil 34:241–247Google Scholar
  37. Chasteen TG, Bentley R (2003) Biomethylation of selenium and tellurium: microorganisms and plants. Chem Rev 103:1–26CrossRefGoogle Scholar
  38. Colpaert JV, van Assche JA (1987) Heavy metal resistance in some ectomycorrhizal fungi. Funct Ecol 1:415–421Google Scholar
  39. Colpaert JV, van Assche JA (1992) Zinc toxicity in ectomycorrhizal Pinus sylvestris. Plant Soil 143:201–211CrossRefGoogle Scholar
  40. Colpaert JV, van Assche JA (1993) The effect of cadmium on ectomycorrhizal Pinus sylvestris L. New Phytol 123:325–333Google Scholar
  41. Colpaert JV, Vandenkoornhuyse P, Adriaensen K, Vangronsveld J (2000) Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillus luteus. New Phytol 147:367–379CrossRefGoogle Scholar
  42. Connolly JH, Jellison J (1997) Two-way translocation of cations by the brown rot fungus Gloeophyllum trabeum. Int Biodet Biodeg 39: 181–188Google Scholar
  43. Cooksey DA (1993) Copper uptake and resistance in bacteria. Mol Microbiol 7:1–5Google Scholar
  44. Cooksey DA (1994) Molecular mechanisms of copper resistance and accumulation in bacteria. FEMS Microbiol Rev 14:381–386CrossRefGoogle Scholar
  45. Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation — update on biotechnology. Plant Physiol 110:715–719Google Scholar
  46. Dameron CT, Reese RN, Mehra RK, Kortan AR, Carrol PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulfide quantum semiconductor crystallites. Nature 338:596–597CrossRefGoogle Scholar
  47. De Leo F, Urzi C, de Hoog GS (2003) A new meristematic fungus, Pseudotaeniolina globosa. Ant van Leeuwenhoek 83:351–360Google Scholar
  48. Del Val C, Barea JM, Azcon-Aguilar C (1999) Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Appl Environ Microbiol 65:718–723Google Scholar
  49. Diaz-Ravina M, Baath E (1996) Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels. Appl Environ Microbiol 62:2970–2977Google Scholar
  50. Dighton J, Terry G (1996) Uptake and immobilization of caesium in UK grassland and forest soils by fungi, following the Chernobyl accident. In: Frankland JC, Magan N, Gadd GM (eds) Fungi and environmental change. Cambridge Univ Press, Cambridge, pp 184–200Google Scholar
  51. Dighton J, Clint GM, Poskitt J (1991) Uptake and accumulation of 137Cs by upland grassland soil fungi: a potential pool of Cs immobilization. Mycol Res 95:1052–1056Google Scholar
  52. Dixon RK, Buschena CA (1988) Response of ectomycorrhizal Pinus banksia and Picea glauka to heavy metals in soil. Plant Soil 105: 265–271Google Scholar
  53. Doelman P, Hanstra L (1979) Effects of lead on the soil bacterial microflora. Soil Biol Biochem 11:487–491Google Scholar
  54. Doelman P, Jansen E, Michels M, van Til M (1994) Effects of heavy metals in soil on microbial diversity and activity as shown by the sensitivity-resistance index, an ecologically relevant parameter. Biol Fertil Soil 17:177–184Google Scholar
  55. Donnelly PK, Hegde RS, Fletcher JS (1994) Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere 28: 981–988CrossRefGoogle Scholar
  56. Dowdle PR, Oremland RS (1998) Microbial oxidation of elemental selenium in soil slurries and bacterial cultures. Environ Sci Technol 32: 3749–3755CrossRefGoogle Scholar
  57. Dungan RS, Frankenberger WT (1999) Microbial transformations of selenium and the bioremediation of seleniferous environments. Bioremed 3: 171–188Google Scholar
  58. Ehrlich HL (1997) Microbes and metals. Appl Microbiol Biotechnol 48:687–692CrossRefGoogle Scholar
  59. Ewart DK, Hughes MN (1991) The extraction of metals from ores using bacteria. Adv Inorg Chem 36:103–135Google Scholar
  60. Fay DA, Mitchell DT (1999) A preliminary study of the mycorrhizal associations of the tree seedlings growing on mine spoil at Avoca, Co. Wicklow. Biol Environ Proc R Irish Acad 99B:19–26Google Scholar
  61. Finneran KT, Anderson RT, Nevin KP, Lovley DR (2002) Bioremediation of uranium contaminated aquifers with microbial U(VI) reduction. Soil Sediment Contam 11:339–357Google Scholar
  62. Flemming H-K (1995) Sorption sites in biofilms. Water Sci Technol 32:27–33Google Scholar
  63. Fortin D, Ferris FG, Beveridge TJ (1997) Surface-mediated mineral development by bacteria. In: Banfield J, Nealson KH (eds) Reviews in mineralogy, vol 35. Mineralogical Society of America, Washington, DC, pp 161–180Google Scholar
  64. Francis AJ, Dodge CJ, Gillow JB (1992) Biodegradation of metal citrate complexes and implications for toxic metal mobility. Nature 356: 140–142CrossRefGoogle Scholar
  65. Gadd GM (1980) Melanin production and differentiation in batch cultures of the polymorphic fungus Aureobasidium pullulans. FEMS Microbiol Lett 9:237–240CrossRefGoogle Scholar
  66. Gadd GM (1992) Microbial control of heavy metal pollution. In: Fry JC, Gadd GM, Herbert RA, Jones CW, Watson-Craik I (eds) Microbial control of pollution. Cambridge Univ Press, Cambridge, pp 59–88Google Scholar
  67. Gadd GM (1993a) Interactions of fungi with toxic metals. New Phytol 124:25–60Google Scholar
  68. Gadd GM (1993b) Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol Rev 11:297–316CrossRefGoogle Scholar
  69. Gadd GM (1996) Influence of microorganisms on the environmental fate of radionuclides. Endeavour 20:150–156CrossRefGoogle Scholar
  70. Gadd GM (1997) Roles of microorganisms in the environmental fate of radionuclides. In: Lake JV, Bock GR, Cardew G (eds) CIBA foundation symposia 203. Health impacts of large releases of radionuclides. Wiley, Chichester, pp 94–108Google Scholar
  71. Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92Google Scholar
  72. Gadd GM (2001) Accumulation and transformation of metals by microorganisms. In: Rehm H-J, Reed G, Puhler A, Stadler P (eds) Biotechnology, a multi-volume comprehensive treatise, vol 10. Special processes. Wiley-VCH, Weinheim, pp 225–264Google Scholar
  73. Gadd GM, Griffiths AJ (1978) Microorganisms and heavy metal toxicity. Microb Ecol 4:303–317Google Scholar
  74. Gadd GM, White C (1989) Heavy metal and radionuclide accumulation and toxicity in fungi and yeasts. In: Poole RK, Gadd GM (eds) Metal-microbe interactions. IRL Press, Oxford, pp 19–38Google Scholar
  75. Gadd GM, Lawrence OS (1996) Demonstration of high-affinity Mn2+ uptake in Saccharomyces cerevisiae — specificity and kinetics. Microbiol 142:1159–1167Google Scholar
  76. Gadd GM, Sayer JA (2000) Fungal transformations of metals and metalloids. In: Lovley DR (ed) Environmental microbe-metal interactions. American Society of Microbiology, Washington, DC, pp 237–256Google Scholar
  77. Galli U, Schuepp H, Brunold C (1994) Heavy metal binding by mycorrhizal fungi. Physiol Plant 92:364–368CrossRefGoogle Scholar
  78. Gerrath JF, Gerrath JA, Larson DW (1995) A preliminary account of endolithic algae of limestone cliffs of the Niagara Escarpment. Can J Bot 73:788–793Google Scholar
  79. Gharieb MM, Gadd GM (1998) Evidence for the involvement of vacuolar activity in metal(loid) tolerance: vacuolar-lacking and-defective mutants of Saccharomyces cerevisiae display higher sensitivity to chromate, tellurite and selenite. BioMetals 11:101–106CrossRefGoogle Scholar
  80. Gharieb MM, Sayer JA, Gadd GM (1998) Solubilization of natural gypsum (CaSO4.2H2O) and the formation of calcium oxalate by Aspergillus niger and Serpula himantiodes. Mycol Res 102:825–830CrossRefGoogle Scholar
  81. Gharieb MM, Kierans M, Gadd GM (1999) Transformation and tolerance of tellurite by filamentous fungi: accumulation, reduction and volatilization. Mycol Res 103:299–305Google Scholar
  82. Giller K, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414CrossRefGoogle Scholar
  83. Glasauer S, Burford EP, Harper FA, Gadd GM, Beveridge TJ (2004) Transformation of metals and metalloids by bacteria and fungi. In: Hillel D, Rosenzweig C, Powlson D, Scow K, Singer M, Sparks D (eds) Encyclopedia of soils in the environment. Academic Press, London (in press)Google Scholar
  84. Gorbushina AA, Krumbein WE, Hamann R, Panina L, Soucharjevsky S, Wollenzien U (1993) On the role of black fungi in colour change and biodeterioration of antique marbles. Geomicrobiol J 11:205–221Google Scholar
  85. Gray SN, Dighton J, Jennings DH (1996) The physiology of basidiomycete linear organs. 3. Uptake and translocation of radiocaesium within differentiated mycelia of Armillaria spp growing in microcosms and in the field. New Phytol 132:471–482Google Scholar
  86. Griffioen WAJ (1994) Characterization of a heavy metal-tolerant endomycorrhizal fungus from the surroundings of a zinc refinery. Mycorrhiza 4:197–200CrossRefGoogle Scholar
  87. Hamilton WA (2003) Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling 19:65–76CrossRefGoogle Scholar
  88. Hartley JW, Cairney G, Meharg AA (1997a) Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant Soil 189:303–319CrossRefGoogle Scholar
  89. Hartley C, Cairney JWG, Sanders FE, Meharg AA (1997b) Toxic interactions of metal ions (Cd2+, Pb2+, Zn2+ and Sb3-) on in vitro biomass production of ectomycorrhizal fungi. New Phytol 137: 551–562CrossRefGoogle Scholar
  90. Hartley J, Cairney JWG, Freestone P, Woods C, Meharg AA (1999) The effects of multiple metal contamination on ectomycorrhizal Scots pine (Pinus sylvestris) seedlings. Environ Poll 106:413–424CrossRefGoogle Scholar
  91. Haselwandter K, Berreck M (1994) Accumulation of radionuclides in fungi. In: Winkelmann G, Winge DR (eds) Metal ions in fungi. Dekker, New York, pp 259–277Google Scholar
  92. Hayashi Y, Mutoh N (1994) Cadystin (phytochelatin) in fungi. In: Winkelmann G, Winge DR (eds) Metal ions in fungi. Dekker, New York, pp 311–337Google Scholar
  93. Hetrick BAD, Wilson GWT, Figge DAH (1994) The influence of mycorrhizal symbiosis and fertilizer amendments on establishment of vegetation in heavy metal mine spoil. Environ Pollut 86:171–179CrossRefGoogle Scholar
  94. Hobman JL, Wilson JR, Brown NL (2000) Microbial mercury reduction. In: Lovley DR (ed) Environmental microbe-metal interactions. ASM Press, Washington, DC, pp 177–197Google Scholar
  95. Holtan-Hartwig L, Bechmann M, Hoyas TR, Linjordet R, Bakken LR (2002) Heavy metals tolerance of soil denitrifying communities: N2O dynamics. Soil Biol Biochem 34:1181–1190Google Scholar
  96. Howe R, Evans RL, Ketteridge SW (1997) Copper binding proteins in ectomycorrhizal fungi. New Phytol 135:123–131CrossRefGoogle Scholar
  97. Huang JWW, Chen JJ, Berti WR, Cunningham SD (1997) Phytoremediation of lead contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805Google Scholar
  98. Inouhe M, Sumiyoshi M, Tohoyama H, Joho M (1996) Resistance to cadmium ions and formation of a cadmium-binding complex in various wild-type yeasts. Plant Cell Physiol 37:341–346Google Scholar
  99. Ivey DM, Guffanti AA, Shen Z, Kudyan N, Krulwich TA (1992) The CadC gene product of alkaliphilic Bacillus firmus OF4 partially restores Na+ resistance to an Escherichia coli strain lacking an Na+/H+ antiporter (NhaA). J Bacteriol 174:4878–4884Google Scholar
  100. Ji G, Silver S (1992a) Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J Bacteriol 174:3684–3694Google Scholar
  101. Ji G, Silver S (1992b) Reduction of arsenate to arsenite by the arsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc Natl Acad Sci USA 89:9474–9478Google Scholar
  102. Ji G, Garber EA, Armes LG, Chen C-M, Fuchs JA, Silver S (1994) Arsenate reductase of Staphylococcus aureus plasmid p1258. Biochemistry 33:7294–7299Google Scholar
  103. Joho M, Inouhe M, Tohoyama H, Murayama T (1995) Nickel resistance mechanisms in yeasts and other fungi. J Indust Microbiol 14: 164–168CrossRefGoogle Scholar
  104. Jones D, Muehlchen A (1994) Effects of the potentially toxic metals, aluminium, zinc and copper on ectomycorrhizal fungi. J Environ Sci Health A Environ Sci Eng 29:949–966Google Scholar
  105. Kameo S, Iwahashi H, Kojima Y, Satoh H (2000) Induction of metallothioneins in the heavy metal resistant fungus Beauveria bassiana exposed to copper or cadmium. Analusis 28:382–385CrossRefGoogle Scholar
  106. Karlson U, Frankenberger WT (1988) Effects of carbon and trace element addition on alkylselenide production by soil. Soil Sci Soc Am J 52: 1640–1644Google Scholar
  107. Karlson U, Frankenberger WT (1989) Accelerated rates of selenium volatilization from California soils. Soil Sci Soc Am J 53: 749–753CrossRefGoogle Scholar
  108. Kelly JJ, Haggblom M, Tate RL (1999) Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study. Soil Biol Biochem 31:1455–1465Google Scholar
  109. Khan M, Scullion J (2002) Effects of metal (Cd, Cu, Ni, Pb or Zn) enrichment of sewagesludge on soil micro-organisms and their activities. Appl Soil Ecol 20:145–155CrossRefGoogle Scholar
  110. Killham K, Firestone MK (1983) Vesicular arbuscular mycorrhizal mediation of grass response to acidic and heavy metal depositions. Plant Soil 72:39–48CrossRefGoogle Scholar
  111. Kostov O, van Cleemput O (2001) Microbial activity of Cu contaminated soils and effect of lime and compost on soil resiliency. Compost Sci Util 9:336–351Google Scholar
  112. Krantz-Rulcker C, Allard B, Schnurer J (1993) Interactions between a soil fungus, Trichoderma harzianum and IIB metals — adsorption to mycelium and production of complexing metabolites. Biometals 6: 223–230Google Scholar
  113. Krantz-Rulcker C, Allard B, Schnurer J (1996) Adsorption of IIB metals by 3 common soil fungi — comparison and assessment of importance for metal distribution in natural soil systems. Soil Biol Biochem 28: 967–975Google Scholar
  114. Kubatova A, Prasil K, Vanova M (2002) Diversity of soil microscopic fungi on abandoned industrial deposits. Crypt Mycol 23:205–219Google Scholar
  115. Kumar R, Kumar AV (1999) Biodeterioration of stone in tropical environments: an overview. John Paul Getty Trust, Los AngelesGoogle Scholar
  116. Kuo C-W, Genthner BRS (1996) Effect of added heavy metal ions on biotransformation and biodegradation of 2-chlorophenol and 3-chlorobenzoate in anaerobic bacterial consortia. Appl Environ Microbiol 62: 2317–2323Google Scholar
  117. Kuperman RG, Carreiro MM (1997) Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem. Soil Biol Biochem 29:179–190CrossRefGoogle Scholar
  118. Lacourt I, D’Angelo S, Girlanda M, Turnau K, Bonfante P, Perotto S (2000) Genetic polymorphism and metal sensitivity of Oidiodendron maius strains isolated form polluted soil. Ann Microbiol 50:157–166Google Scholar
  119. Landa ER, Gray JR (1995) US Geological Survey — results on the environmental fate of uranium mining and milling wastes. J Ind Microbiol 26:19–31Google Scholar
  120. Ledin M, Krantz-Rulcker C, Allard B (1996) Zn, Cd and Hg accumulation by microorganisms, organic and inorganic soil components in multicompartment systems. Soil Biol Biochem 28:791–799CrossRefGoogle Scholar
  121. Lee Y-A, Hendson M, Panopoulus NJ, Schrott MN (1994) Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with blue copper proteins and multicopper oxidase. J Bacteriol 176:173–188Google Scholar
  122. Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153CrossRefGoogle Scholar
  123. Liu XF, Culotta VC (1999) Mutational analysis of Saccharomyces cerevisiae Smf1p, a member of the Nramp family of metal transporters. J Mol Biol 289:885–891CrossRefGoogle Scholar
  124. Lloyd JR, Macaskie LE (1998) Enzymatic recovery of elemental palladium using sulfate reducing bacteria. Appl Environ Microbiol 64: 4607–4609Google Scholar
  125. Lloyd JR, Ridley J, Khizniak T, Lyalikova NN, Macaskie LE (1999a) Reduction of technetium by Desulfovibrio desulfuricans: biocatalyst characterization and use in a flow-through bioreactor. Appl Environ Microbiol 65:2691–2696Google Scholar
  126. Lloyd JR, Thomas GH, Finlay JA, Cole JA, Macaskie LE (1999b) Microbial reduction of technetium by Escherichia coli and Desulfovibrio desulfuricans: enhancement via the use of high activity strains and effect of process parameters. Biotechnol Bioeng 66:122–130CrossRefGoogle Scholar
  127. Losi ME, Frankenberger WT (1998) Microbial oxidation and solubilization of precipitated elemental selenium in soil. J Environ Qual 27:836–843CrossRefGoogle Scholar
  128. Lovley DR (ed) (2000) Environmental microbe-metal interactions. ASM Press, Washington, DCGoogle Scholar
  129. Lovley DR (2001) Anaerobes to the rescue. Science 293: 1444–1446CrossRefGoogle Scholar
  130. Lovely DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289Google Scholar
  131. Macaskie LE (1991) The application of biotechnology to the treatment of wastes produced by the nuclear fuel cycle — biodegradation and bioaccumulation as a means of treating radionuclide-containing streams. Crit Rev Biotechnol 11:41–112Google Scholar
  132. Macreadie IG, Sewell AK, Winge DR (1994) Metal ion resistance and the role of metallothionein in yeast. In: Winkelmann G, Winge DR (eds) Metal ions in fungi. Dekker, New York, pp 279–310Google Scholar
  133. Malakul P, Srinivasan KR, Wang HY (1998) Metal toxicity reduction in naphthalene biodegradation by use of metal-chelating adsorbents. Appl Environ Microbiol 64:4610–4613Google Scholar
  134. Markkola AM, Ahonen-Jonnarth U, Roitto M, Strommer R, Hyvarinen M (2002) Shift in ectomycorrhizal community composition in Scots pine (Pinus sylvestris L.) seedling roots as a response to nickel deposition and removal of lichen cover. Environ Pollut 120:797–803Google Scholar
  135. Massaccesi G, Romero MC, Cazau MC, Bucsinszky AM (2002) Cadmium removal capacities of filamentous soil fungi isolated from industrially polluted sediments, in La Plata (Argentina). World J Microbiol Biotechnol 18:817–820CrossRefGoogle Scholar
  136. McLean JE, Bledsoe BE (1992) Behavior of metals in soils. EPA/540/S-92/018, US EPA, Washington, DCGoogle Scholar
  137. McLean J, Beveridge TJ (2001) Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol 67:1076–1084CrossRefGoogle Scholar
  138. McLean JS, Lee J-U, Beveridge TJ (2002) Interactions of bacteria and environmental metals, fine-grained mineral development, and bioremediation strategies. In: Huang PM, Bollag J-M, Senesi N (eds) Interactions between soil particles and microorganisms. Wiley, New York, pp 228–261Google Scholar
  139. Meharg AA, Cairney JWG (2000) Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Adv Ecol Res 30: 69–112Google Scholar
  140. Mehra RK, Winge DR (1991) Metal ion resistance in fungi: molecular mechanisms and their related expression. J Cell Biochem 45:30–40CrossRefGoogle Scholar
  141. Mineev VG, Gomonova NF, Zenova GM, Skvortsova IN (1999) Changes in the properties of soddy-podzolic soil and its microbocenosis under intensive anthropogenic impact. Eurasian Soil Sci 32:413–417Google Scholar
  142. Morley GF, Gadd GM (1995) Sorption of toxic metals by fungi and clay minerals. Mycol Res 99:1429–1438Google Scholar
  143. Morley GF, Sayer JA, Wilkinson SC, Gharieb MM, Gadd GM (1996) Fungal sequestration, solubilization and transformation of toxic metals. In: Frankland JC, Magan N, Gadd GM (eds) Fungi and environmental change. Cambridge Univ Press, Cambridge, pp 235–256Google Scholar
  144. Mowll JL, Gadd GM (1985) The effect of vehicular lead pollution on phylloplane mycoflora. Trans Br Mycol Soc 84:685–689CrossRefGoogle Scholar
  145. Moynahan OS, Zabinski CA, Gannon JE (2002) Microbial community structure and carbon utilization diversity in a mine tailings revegetation study. Restoration Ecol 10:77–87Google Scholar
  146. Mozafar A, Ruh R, Klingel P, Gamper H, Egli S, Frossard E (2002) Effect of heavy metal contaminated shooting range soils on mycorrhizal colonization of roots and metal uptake by leek. Environ Monit Assess 79:177–191CrossRefGoogle Scholar
  147. Murasugi A, Wada C, Hayashi Y (1983) Occurrence of acid labile sulfide in cadmium binding peptide 1 from fission yeast. J Biochem 93: 661–664Google Scholar
  148. Nies DH (1992a) Resistance to cadmium, cobalt, zinc, and nickel in microbes. Plasmid 27:17–28CrossRefGoogle Scholar
  149. Nies DH (1992b) Czcr and Czcd, gene-products affecting regulation of resistance to cobalt, zinc, and cadmium (czc system) in Alcaligenes eutrophus. J Bacteriol 174:8102–8110Google Scholar
  150. Nies DH (1995) The cobalt, zinc, and cadmium efflux system czcabc from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli. J Bacteriol 177:2707–2712Google Scholar
  151. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750CrossRefGoogle Scholar
  152. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339CrossRefGoogle Scholar
  153. Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199CrossRefGoogle Scholar
  154. Nies DH, Nies A, Chu L, Silver S (1989a) Expression and nucleotide sequence of a plasmid determined divalent-cation efflux system from Alcaligenes eutrophus. Proc Natl Acad Sci USA 86:7351–7355Google Scholar
  155. Nies A, Nies DH, Silver S (1989b) Cloning and expression of plasmid genes encoding resistances to chromate and cobalt in Alcaligenes eutrophus. J Bacteriol 171:5065–5070Google Scholar
  156. Nies A, Nies DH, Silver S (1990) Nucleotide sequence and expression of plasmid-encoded chromate resistance determinant from Alcaligenes eutrophus. J Biol Chem 265:5648–5653Google Scholar
  157. Ohtake H, Cervantes C, Silver S (1987) Decreased chromate uptake in Pseudomonas fluorescens carrying a chromate resistance plasmid. J Bacteriol 169:3853–3856Google Scholar
  158. Okorokov LA (1994) Several compartments of Saccharomyces cerevisiae are equipped with Ca2+ ATPase(s). FEMS Microbiol Lett 117: 311–318CrossRefGoogle Scholar
  159. Okorokov LA, Lichko LP, Kulaev IS (1980) Vacuoles: main compartments of potassium, magnesium and phosphate in Saccharomyces carlsbergensis cells. J Bacteriol 144:661–665Google Scholar
  160. Okorokov LA, Kulakovskaya TV, Lichko LP, Polorotova EV (1985) H+/ion antiport as the principal mechanism of transport systems in the vacuolar membrane of the yeast Saccharomyces carlsbergensis. FEBS Lett 192:303–306CrossRefGoogle Scholar
  161. Olayinka A, Babalola GO (2001) Effects of copper sulphate application on microbial numbers and respiration, nitrifier and urease activities, and nitrogen and phosphorus mineralization in an alfisol. Biol Agric Hort 19:1–8Google Scholar
  162. Oremland R, Stolz J (2000) Dissimilatory reduction of selenate and arsenate in nature. In: Lovley DR (ed) Environmental microbe-metal interactions. ASM Press, Washington, DC, pp 199–224Google Scholar
  163. Oremland RS, Hollibaugh JT, Maest AS, Presser TS, Miller LG, Culbertson CW (1989) Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel sulfate-independent respiration. Appl Environ Microbiol 55: 2333–2343Google Scholar
  164. Oremland RS, Steinberg NA, Presser TS, Miller LG (1991) In situ bacterial selenate reduction in the agricultural drainage systems of Western Nevada. Appl Environ Microbiol 57:615–617Google Scholar
  165. Ortiz DF, Kreppel DF, Speiser DM, Scheel G, McDonald G, Ow DW (1992) Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J 11:3491–3499Google Scholar
  166. Ortiz DF, Ruscitti T, McCue KF, Ow DW (1995) Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J Biol Chem 270:4721–4728Google Scholar
  167. Ow DW (1993) Phytochelatin-mediated cadmium tolerance in Schizosaccharomyces pombe. In Vitro Cell Dev Biol Plant 29P: 213–219Google Scholar
  168. Ow DW, Ortiz DF, Speiser DM, McCue KF (1994) Molecular genetic analysis of cadmium tolerance in Schizosaccharomyces pombe. In: Winkelmann G, Winge DR (eds) Metal ions in fungi. Dekker, New York, pp 339–359Google Scholar
  169. Pawlowska TE, Chaney RL, Chin M, Charvat I (2000) Effects of metal phytoextraction practices on the indigenous community of arbuscular mycorrhizal fungi at a metal contaminated landfill. Appl Environ Microbiol 66: 2526–2530CrossRefGoogle Scholar
  170. Pennanen T, Frostegard A, Fritze, Baath E (1996) Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forests. Appl Environ Microbiol 62:420–428Google Scholar
  171. Perkins J, Gadd GM (1993a) Accumulation and intracellular compartmentation of lithium ions in Saccharomyces cerevisiae. FEMS Microbiol Lett 107:255–260CrossRefGoogle Scholar
  172. Perkins J, Gadd GM (1993b) Caesium toxicity, accumulation and intracellular-localization in yeasts. Mycol Res 97:717–724CrossRefGoogle Scholar
  173. Phillips EJP, Landa ER, Lovley DR (1995) Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction. J Ind Microbiol 14:203–207CrossRefGoogle Scholar
  174. Ramsay LM, Gadd GM (1997) Mutants of Saccharomyces cerevisiae defective in vacuolar function confirm a role for the vacuole in toxic metal ion detoxification. FEMS Microbiol Lett 152:293–298CrossRefGoogle Scholar
  175. Rauser WE (1995) Phytochelatins and related peptides. Plant Physiol 109:1141–1149Google Scholar
  176. Rawlings DE (1997) Mesophilic, autotrophic bioleaching bacteria: description, physiology and role. In: Rawlings DE (ed) Biomining: theory, microbes and industrial processes. Springer, Berlin Heidelberg New York, pp 229–245Google Scholar
  177. Rawlings DE, Silver S (1995) Mining with microbes. Biotechnology 13:773–338Google Scholar
  178. Renella G, Chaudri AM, Brookes PC (2002) Fresh additions of heavy metals do not model long-term effects on microbial biomass and activity. Soil Biol Biochem 34:121–124Google Scholar
  179. Ribeiro RM, Moureaux C, Mussi Santos A (1972) Essai de mise en evidence sur milieu electif d’une microfbre fongique adaptee aux sols A teneur elevee en cuivre. Cahiers ORSTOM Serie Pedol 10:305–308Google Scholar
  180. Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci USA 93:3182–3187CrossRefGoogle Scholar
  181. Rusin PA, Sharp JE, Oden KL, Arnold RG, Sinclair NA (1993) Isolation and physiology of a manganese-reducing Bacillus polyrnyxa from an Oligocene silver-bearing ore and sediment with reference to Precambrian biogeochemistry. Precamb Res 61:231–240Google Scholar
  182. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668CrossRefGoogle Scholar
  183. Sandaa R-A, Enger O, Torsvik V (1999) Abundance and diversity of Archaea in heavy-metal contaminated soils. Appl Environ Microbiol 65:3293–3297Google Scholar
  184. Sayer JA, Gadd GM (2001) Binding of cobalt and zinc by organic acids and culture filtrates of Aspergillus niger grown in the absence or presence of insoluble cobalt or zinc phosphate. Mycol Res 105:1261–1267Google Scholar
  185. Sayer JA, Cotter-Howells JD, Watson C, Hillier S, Gadd GM (1999) Lead mineral transformation by fungi. Curr Biol 9:691–694CrossRefGoogle Scholar
  186. Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulphur. Appl Environ Microbiol 65:319–321Google Scholar
  187. Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318A–323AGoogle Scholar
  188. Schottel J, Mandal A, Clark D, Silver S, Hedges RW (1974) Volatilization of mercury and organomercurials determined by inducible R-factor systems in enteric bacteria. Nature 251:335–337CrossRefGoogle Scholar
  189. Sharples JM, Chambers SM, Meharg AA, Cairney JWG (2000) Genetic diversity of root associated fungal endophytes from Calluna vulgaris at contrasting field sites. New Phytol 148:153–162CrossRefGoogle Scholar
  190. Sharples IM, Meharg AA, Chambers SM, Cairney JWG (2001) Arsenate resistance in the ericoid mycorrhizal fungus Hymenoscyphus ericae. New Phytol 151:265–270CrossRefGoogle Scholar
  191. Shi W, Becker J, Bischoff M, Turco RF, Konopka AE (2002) Association of microbial community composition and activity with lead, chromium, and hydrocarbon contamination. Appl Environ Microbiol 68:3859–3866CrossRefGoogle Scholar
  192. Silver S (1996) Bacterial resistances to toxic metals — a review. Gene 179:9–19CrossRefGoogle Scholar
  193. Silver S (1998) Genes for all metals — a bacterial view of the Periodic Table. J Indust Microbiol Biotechnol 20:1–12Google Scholar
  194. Silver S, Phung Le T (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789CrossRefGoogle Scholar
  195. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San DiegoGoogle Scholar
  196. Smith T, Pitts K, McGarvey JA, Summers AO (1998) Bacterial oxidation of mercury metal vapour, Hg(o). Appl Environ Microbiol 64: 1328–1332Google Scholar
  197. Smith WL, Gadd GM (2000) Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms. J Appl Microbiol 88:983–991CrossRefGoogle Scholar
  198. Solioz M, Odermatt A (1995) Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J Biol Chem 270: 9217–9221CrossRefGoogle Scholar
  199. Solioz M, Odermatt A, Krapf R (1994) Copper pumping ATPases: common concepts in bacteria and man. FEBS Lett 346:44–47CrossRefGoogle Scholar
  200. Southam G (2000) Bacterial surface-mediated mineral formation. In: Lovley DR (ed) Environmental microbe-metal interactions. ASM Press, Washington, DC, pp 257–276Google Scholar
  201. Sreekrishnan TR, Tyagi RD (1994) Heavy metal leaching from sewage sludges: a techno-economic evaluation of the process options. Environ Technol 15:531–543Google Scholar
  202. Staley IT, Palmer F, Adams JB (1982) Microcolonial fungi: common inhabitants on desert rocks. Science 215:1093–1095Google Scholar
  203. Stephen JR, Chang Y-J, Macnaughton SJ, Kowalchuk GA, Leung KT, Flemming CA, White DC (1999) Effect of toxic metals on indigenous soil a-subgroup proteobacterium ammonia oxidizer community: structure and protection against toxicity by inoculated metal resistant bacteria. Appl Environ Microbiol 65:95–101Google Scholar
  204. Sterfinger K (2000) Fungi as geologic agents. Geomicrobiol J 17: 97–124Google Scholar
  205. Stolz JF, Oremland RS (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23:615–627CrossRefGoogle Scholar
  206. Strasser H, Burgstaller W, Schinner F (1994) High yield production of oxalic acid for metal leaching purposes by Aspergillus niger. FEMS Microbiol Lett 119:365–370CrossRefGoogle Scholar
  207. Tebo BM, Obraztsova AY (1998) Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol Lett 162:193–198CrossRefGoogle Scholar
  208. Thompson-Eagle ET, Frankenberger WT (1992) Bioremediation of soils contaminated with selenium. In: Lal R, Stewart BA (eds) Advances in soil science. Springer, Berlin Heidelberg New York, pp 261–309Google Scholar
  209. Thompson-Eagle ET, Frankenberger WT, Karlson U (1989) Volatilization of selenium by Alternaria alternata. Appl Environ Microbiol 55: 1406–1413Google Scholar
  210. Tobin JM, White C, Gadd GM (1994) Metal accumulation by fungi — applications in environmental biotechnology. J Ind Microbiol 13: 126–130CrossRefGoogle Scholar
  211. Tohoyama H, Inouhe M, Joho M, Murayama T (1995) Production of metallothionein in copper-resistant and cadmium-resistant strains of Saccharomyces cerevisiae. J Ind Microbiol 14:126–131CrossRefGoogle Scholar
  212. Tomei FA, Barton LL, Lemanski CL, Zocco TG, Fink NH, Sillerud LO (1995) Transformation of selenate and selenite to elemental selenium by Desulfovibrio desulfuricans. J Ind Microbiol 14:329–336CrossRefGoogle Scholar
  213. Tsezos M, Volesky B (1982a) The mechanism of uranium biosorption by Rhizopus arrhizus. Biotechnol Bioeng 24:385–401Google Scholar
  214. Tsezos M, Volesky B (1982b) The mechanism of thorium biosorption by Rhizopus arrhizus. Biotechnol Bioeng 24:955–969Google Scholar
  215. Turner RJ, Weiner JH, Taylor DE (1995) Neither reduced uptake nor increased efflux is encoded by tellurite resistance determinants expressed in Escherichia coli. Can J Microbiol 41:92–98Google Scholar
  216. Vachon RPD, Tyagi J, Auclair C, Wilkinson KJ (1994) Chemical and biological leaching of aluminium from red mud. Environ Sci Technol 28: 26–30CrossRefGoogle Scholar
  217. Verrecchia EP (2000) Fungi and sediments. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin Heidelberg New York, pp 69–75Google Scholar
  218. Verrecchia EP, Dumont J-L (1996) A biogeochemical model for chalk alteration by fungi in semiarid environments. Biogeochemistry 35: 447–470CrossRefGoogle Scholar
  219. Vieira MJ, Melo LF (1995) Effect of clay particles on the behaviour of biofilms formed by Pseudomomonas fluorescens. Wat Sci Technol 32:45–52CrossRefGoogle Scholar
  220. Vodnik D, Byrne AR, Gogala N (1998) The uptake and transport of lead in some ectomycorrhizal fungi in culture. Mycol Res 102:953–958CrossRefGoogle Scholar
  221. Wainwright M, Gadd GM (1997) Fungi and industrial pollutants. In: Wicklow DT, Soderstrom BE (eds) The Mycota V environmental and microbial relationships. Springer, Berlin Heidelberg New York, pp 85–97Google Scholar
  222. Walter EG, Taylor DE (1992) Plasmid-mediated resistance to tellurite: expressed and cryptic. Plasmid 27:52–64CrossRefGoogle Scholar
  223. Watson JHP, Ellwood DC, Deng QX, Mikhalovsky S, Hayter CE, Evans J (1995) Heavy metal adsorption on bacterially-produced FeS. Min Eng 8:1097–1108Google Scholar
  224. Watson JHP, Cressey BA, Roberts AP, Ellwood DC, Charnock JM, Soper AK (2000) Structural and magnetic studies on heavy-metal-adsorbing iron sulphide nanoparticles produced by sulphate-reducing bacteria. J Magnet Magn Mat 214:13–30Google Scholar
  225. White C, Gadd GM (1986) Uptake and cellular distribution of copper, cobalt and cadmium in strains of Saccharomyces cerevisiae cultured on elevated concentrations of these metals. FEMS Microbiol Ecol 38: 277–283CrossRefGoogle Scholar
  226. White C, Gadd GM (1987) The uptake and cellular distribution of zinc in Saccharomyces cerevisiae. J Gen Microbiol 133:727–737Google Scholar
  227. White C, Gadd GM (1997) An internal sedimentation bioreactor for laboratory-scale removal of toxic metals from soil leachates using biogenic sulphide precipitation. J Ind Microbiol 18:414–421Google Scholar
  228. White C, Gadd GM (1998a) Accumulation and effects of cadmium on sulphate-reducing bacterial biofilms. Microbiol 144:1407–1415Google Scholar
  229. White C, Gadd GM (1998b) Reduction of metal cations and oxyanions by anaerobic and metal-resistant organisms: chemistry, physiology and potential for the control and bioremediation of toxic metal pollution. In: Grant WD, Horikoshi T (eds) Extremophiles: physiology and biotechnology. Wiley, New York, pp 233–254Google Scholar
  230. White C, Gadd GM (2000) Copper accumulation by sulphate-reducing bacterial biofilms and effects on growth. FEMS Microbiol Lett 183: 313–318CrossRefGoogle Scholar
  231. White C, Sayer JA, Gadd GM (1997) Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS Microbiol Rev 20:503–516CrossRefGoogle Scholar
  232. White C, Sharman K, Gadd GM (1998) An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nature Biotechnol 16:572–575CrossRefGoogle Scholar
  233. Wilkins DA (1991) The influence of sheathing (ecto-)mycorrhizas of trees on the uptake and toxicity of metals. Agric Ecosyst Environ 35: 245–260Google Scholar
  234. Wilkinson DM, Dickinson NM (1995) Metal resistance in trees — the role of mycorrhizae. Oikos 72:298–300Google Scholar
  235. Wollenzien U, de Hoog GS, Krumbein WE, Urzi C (1995) On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Sci Total Environ 167:287–294Google Scholar
  236. Wu JS, Sung HY, Juang RJ (1995) Transformation of cadmium-binding complexes during cadmium sequestration in fission yeast. Biochem Mol Biol Int 36:1169–1175Google Scholar
  237. Yu W, Farrell RA, Stillman DJ, Winge DR (1996) Identification of SLF1 as a new copper homeostasis gene involved in copper sulfide mineralization in Saccharomyces cerevisiae. Mol Cell Biol 16:2464–2472Google Scholar
  238. Zhdanova NN, Redchitz TI, Vasilevskaya AI (1986) Species composition and sorption properties of Deuteromycetes in soils polluted by industrial wastewater(in Russian). Mikrobiol Zh 48:44–50Google Scholar
  239. Zinkevich V, Bogdarina I, Kang H, Hill MAW, Tapper R, Beech IB (1996) Characterization of exopolymers produced by different isolates of marine sulphate-reducing bacteria. Int Biodet Biodeg 37:163–172Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Geoffrey M. Gadd
    • 1
  1. 1.Division of Environmental and Applied Biology, Biological Sciences Institute, School of Life SciencesUniversity of DundeeScotlandUK

Personalised recommendations