Advertisement

The geography of a faunal turnover: tracking the vallesian crisis

  • Isaac Casanovas-Vilar
  • Salvador Moyá-Solá
  • Jordi Agustí
  • Meike Köhler

Abstract

The configuration of emerged land masses as well as the distribution of suitable habitats are two important constraints for migration of land mammals. The evolution of late Miocene European land mammal faunas seems to be related to climatic change, which consisted in a general cooling and an increase in seasonality starting by the late Miocene. The pre-existing subtropical evergreen forests were replaced by mixed mesophytic ones at higher latitudes, while in the peri-Mediterranean regions the forest cover was fragmented. The Vallesian Crisis, which implied the disappearance of forest-adapted taxa and a general diversity decay in Western Europe by the beginning of the late Miocene, has been related to main climatic changes. This crisis is a well-established event in the Iberian Peninsula, however the response of mammal communities in other areas is still debated. The goals of present work are to refine chronologic and geographic limits of the Vallesian Crisis. Data input consists in a series of fossil mammal sites covering most of the middle and all the late Miocene (13.8 – 4.9 Ma). Provinciality has been studied using cluster analysis, and results indicate the maintenance of three main bioprovinces (Greek-Iranian, Iberian and Central European) during most of the time span. Diversity and origination and extinction rates have been calculated for all Europe and for each main bioprovince whenever possible. The results show that diversity increased during the late Vallesian and the Turolian in the Greek-Iranian bioprovince because of the development of open-country herbivore faunas while diversity remained stable in Central Europe. A decay in diversity started in the Iberian Peninsula by the early Vallesian and genera richness kept descending during the Turolian. Although the environment was rather similar in East and West, Turolian mammal faunas from the Iberian Peninsula are very poor and show few eastern immigrants. We suggest that mixed mesophytic forests covering most of Central Europe acted as an ecological filter, preventing the migration of open-country adapted taxa from Anatolia.

Keywords

Europe Miocene mammals biogeography paleoclimatology faunal turnover migration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agustí J (1982) Biozonación del Neógeno continental de Catalunya mediante roedores (Mammalia). Acta Geológica Hispánica, Spain 17(1-2): 221–226Google Scholar
  2. Agustí J (1989) On the peculiar distribution of some Muroid taxa in the Western Mediterranean. Bolletino della Società Paleontologica Italiana, Italy 28(2–3): 147–154Google Scholar
  3. Agustí J, Moyà-Solà S (1990) Mammal extinctions in the Vallesian (Upper Miocene). Lecture Notes in Earth Sciences, Springer-Verlag, Germany 30: 425–432Google Scholar
  4. Agustí J, Cabrera L, Garcés M, Llenas M (1999) Mammal turnover and Global climate change in the late Miocene terrestrial record of the Vallès-Penedès basin (NE Spain). In Agustí J, Rook L, Andrews P (eds) Hominoid evolution and climatic change in Europe. Vol. 1: The evolution of Neogene terrestrial ecosystems in Europe. Cambridge University Press, UK: 390–397Google Scholar
  5. Agustí J Cabrera L, Garcés M, Krijgsman W, Oms O, Parés JM (2001) A calibrated mammal scale for the Neogene of Western Europe. State of art. Earth-Science Reviews, Elsevier, The Netherlands 52: 247–260Google Scholar
  6. Agustí J, Sanz de Siria A, Garcés M (2003) Explaining the end of hominoid experiment in Europe. Journal of Human Evolution, Elsevier, The Netherlands 45: 145–153Google Scholar
  7. Alba DM, Agustí J, Moyà-Solà S (2001) Completeness of the mammalian fossil record in the Iberian Neogene. Paleobiology, The Paleontological Society, USA 27(1): 79–83Google Scholar
  8. Alroy J, Koch PL, Zachos JC (2000) Global climate change and North American mammalian evolution. In Erwin HD, Wing SL (eds) Deep Time: Paleobiology’s Perspective. Supplement to Paleobiology, The Paleontological Society, USA 26(4): 259–288Google Scholar
  9. Amano K, Taira A (1992) Two-phase uplift of Higher Himalaya since 17 Ma. Geology, The Geological Society of America, USA 20: 391–394Google Scholar
  10. Andrews P (1992) Evolution and environment in the Hominoidea. Nature, Nature Publishing Group, UK 360: 641–646Google Scholar
  11. Bernor RL, Armour-Chelu M (1999) Family Equidae. In Rössner GE, Heissig K (eds) The Miocene land mammals of Europe. K Verlag Dr Friedrich Pfeil, Germany: 193–202Google Scholar
  12. Bernor RL Kovar-Eder J Lipscomb D Rögl F Sen S, Tobien H (1987) Systematic, stratigraphic and paleoenvironmental contexts of first-appearing Hipparion in the Vienna Basin, Austria. Journal of Vertebrate Paleontology, Society of Vertebrate Paleontology, USA 8(4): 427–452Google Scholar
  13. Bernor RL, Mittmans HW, Rögl F (1993) Systematics and chronology of the Götzendorf “ Hipparion” (Late Miocene, Pannonian F, Vienna Basin). Annales Naturhistorisches Museum Wien, Austria 95(A): 101–120Google Scholar
  14. Bernor RL, Fahlbusch V, Andrews P, De Bruijn H, Fortelius M, Rögl F, Steininger FF, Werdelin L (1996) The evolution of Western Eurasian Neogene mammal faunas: a chronologic, systematic, biogeographic and paleoenvironmental synthesis. In Bernor RL Fahlbusch V, Mittmann H-W (eds) The Evolution of Western Eurasian Neogene Mammal Faunas, Columbia University Press, USA: 449–469Google Scholar
  15. Bernor RL, Fortelius M, Rook L (2001) Evolutionary biogeography and paleoecology of the Oreopithecus bambolii “Faunal Zone” (late Miocene, Tusco-Sardinian Province). Bollettino della Società Paleontologica Italiana, Italy 40(2):139–148Google Scholar
  16. Bessedik M, Aguilar J-P, Cappeta H, Michaux J (1984) Le climat du Néogène dans le sud de la France (Provence, Languedoc, Rousillon), d’après l’analyse des faunes (rongeurs, sélaciens) et des flores polliniques. Paléobiologie continentale, France 14(2): 181–190Google Scholar
  17. Bobe R, Eck G (2001) Responses of African bovids to Pliocene climatic change. Paleobiology Memoirs, The Paleontological Society, USA supplement to 27(2): 1–48Google Scholar
  18. Casanovas-Vilar I, Agustí J (submitted) Ecogeographical stability and climate forcing in the late Miocene (Vallesian) rodent record of Spain.Google Scholar
  19. Cerling TE, Harris JR, MacFadden BJ, Leakey MG, Quade J, Eisenmann V, Ehleringer JR (1997) Global vegetation change through the Miocene / Pliocene boundary. Nature, Nature Publishing Group, UK 389: 153–158Google Scholar
  20. De Bonis L, Bouvrain G, Geraads D, Koufos G (1992) Diversity and paleoecology of Greek late Miocene mammalian faunas. Paleogeography, Paleoclimatology, Paleoecology, Elsevier, The Netherlands 91: 99–121Google Scholar
  21. De Bruijn H, Ünay E (1996) On the evolutionary history or the Cricetodontini from Europe and Asia Minor and its bearing on the reconstruction of migrations and the continental biotope during the Neogene. In Bernor RL Fahlbusch V, Mittmann H-W (eds) The Evolution of Western Eurasian Neogene Mammal Faunas, Columbia University Press, USA: 227–234Google Scholar
  22. De Bruijn H Fahlbusch V Saraç G, Ünay E (1993) Early Miocene rodent faunas from the Eastern Mediterranean area. Part III: The genera Deperetomys and Cricetodon, with a discussion of the evolutionary history of the Cricetodontini. Proceedings Koninklije Nederlandse Akademie van Wetenschappen, The Netherlands B 96: 151–216Google Scholar
  23. Foote M (2000) Origination and extinction components of taxonomic diversity: general problems. In Erwin HD, Wing SL (eds) Deep Time: Paleobiology’s Perspective. Supplement to Paleobiology, The Paleontological Society, USA 26(4): 74–103Google Scholar
  24. Foote M, Raup DM (1996) Fossil preservation and the stratigraphic ranges of taxa. Paleobiology, The Paleontological Society, USA 22: 121–140Google Scholar
  25. Fortelius M, Hokkanen A (2001) The trophic context of hominoid occurence in the later Miocene of Western Eurasia — a primate-free view. In de Bonis L Koufos G, Andrews P (eds) Hominoid evolution and climatic change in Europe. Vol. 2: Phylogeny for the Neogene hominoid primates of Eurasia Cambridge University Press, UK: 19–47Google Scholar
  26. Fortelius M, Werdelin L, Andrews P, Bernor RL, Gentry A, Humphrey L, Mittmann H-W, Viratana S (1996) Provinciality, Diversity, Turnover, and Paleoecology in Land Mammal Faunas of the Later Miocene of Western Eurasia. In Bernor RL Fahlbusch V, Mittmann H-W (eds) The Evolution of Western Eurasian Neogene Mammal Faunas, Columbia University Press, USA: 414–448Google Scholar
  27. Fortelius M, Eronen J, Jernvall J, Liu L, Pushkina D, Tesakov A, Vislobokova I, Zhang Z, Zhou L (2002) Fossil mammals resolve regional patterns of Eurasian climate change during 20 million years. Evolutionary Ecology Research, USA 4: 1005–1016Google Scholar
  28. Fortelius M, Eronen J, Liu L, Pushkina D, Tesakov A, Vislobokova I, Zhang Z (2003) Continental-scale hypsodonty patterns, climatic paleobiogeography and dispersal of Eurasian Neogene large mammal herbivores. In Reumer JWF, Wessels W (eds) Distribution and Migration of Tertiary Mammals in Eurasia. A volume in honour of Hans de Bruijn. Deinsea, Backhuys Publishers, The Netherlands 10: 1–11Google Scholar
  29. Franzen JL, Storch G (1999) Late Miocene mammals from Central Europe. In Agustí J Rook L, Andrews P (eds) Hominoid evolution and climatic change in Europe. Vol. 1: The evolution of Neogene terrestrial ecosystems in Europe. Cambridge University Press, UK: 165–190Google Scholar
  30. Garcés M, Agustí J, Cabrera L, Parés JM (1996) Magnetostratigraphy of the Vallesian (late Miocene) in the Vallès-Penedès Basin (northeast Spain). Earth and Planetary Science Letters, Elsevier, The Netherlands 142: 381–396Google Scholar
  31. Garcés M, Cabrera L, Agustí J, Parés JM (1997) Old World first appearance datum of Hipparion-horses: Late Miocene large-mammal dispersal and global events. Geology, The Geological Society of America, USA 25(1): 19–22Google Scholar
  32. García-Moreno E (1987) Roedores y lagomorfos del Mioceno de la zona central de la Cuenca del Duero. Sistemática, bioestratigrafía y paleoecología. Tesis Doctoral Universidad Complutense Madrid, Spain unpublished: 1–259Google Scholar
  33. Geraads D (1998) Biogeography of circum-Mediterranean Miocene-Pliocene rodents; a revision using factor analysis and parsimony analysis of endemicity. Paleogeography, Paleoclimatology, Paleoecology, Elsevier, The Netherlands 137: 273–288Google Scholar
  34. Ghetti P, Anadón P, Bertini A, Esu D, Gliozzi E, Rook L, Soulié-Märsche I (2002) The early Messinian Velona basin (Siena, central Italy): paleoenvironmental and paleobiogeographical reconstructions. Paleogeography, Paleoclimatology, Paleoecology, Elsevier, The Netherlands 187: 1–33Google Scholar
  35. Hammer Ø, Harper DAT, Ryan P (2001) PAST: Paleontological statistics software package for education and data analysis. Paleontologia Electronica 4(1, 4): 1–9Google Scholar
  36. Haq BU, Hardenbol J, Vail PR (1987). Chronology of fluctuating sea levels since the Triassic. Science, American Association for the Advancement of Science, USA 235: 1156–1167Google Scholar
  37. Kappelman J, Duncam A, Feshea M, Lunkka J-P, Ekart D, McDowell F, Ryan T, Swisher III CC (2003) Chronology of the Sinap Formation. In Bernor RL Kappelman J Sen S, Fortelius M (eds) Monograph of the Sinap Formation, Anatolia, Turkey, Columbia University Press, USA: 41–69Google Scholar
  38. Kloosterboer-van Hoeve M, Steenbrink J, Vught Nvan, Hilgen FJ (2000) Refinement of the Messinian APTS from cycle patterns in the lacustrine Lava section. Earth and Planetary Science Letters, Elsevier, The Netherlands 181: 161–173Google Scholar
  39. Köhler M, Moyà-Solà S (1997) Ape-like or hominid-like? The positional behavior of Oreopithecus bambolii reconsidered. Proceedings National Academy of Sciences of the USA 94: 11747–11750Google Scholar
  40. Köhler M, Moyà-Solà S (2003) Understanding the enigmatic ape Oreopithecus bambolii. Cour Forsch-Inst Senckenberg, Germany 243: 111–123Google Scholar
  41. Koufos GD (2003) Late Miocene mammal events and biostratigraphy in the Eastern Mediterranean. In Reumer JWF, Wessels W (eds) Distribution and Migration of Tertiary Mammals in Eurasia. A volume in honour of Hans de Bruijn. Deinsea, Backhuys Publishers, The Netherlands 10: 343–372Google Scholar
  42. Kovar-Eder J (2003) Vegetation dynamics in Europe during the Neogene. In Reumer JWF, Wessels W (eds) Distribution and Migration of Tertiary Mammals in Eurasia. A volume in honour of Hans de Bruijn. Deinsea, Backhuys Publishers, The Netherlands 10: 373–392Google Scholar
  43. Kutzbach JE, Prell L, Rudiman WF (1993) Sensitivity of Eurasian climate to surface uplift of Tibetan Plateau. Journal of Geology, University of Chicago Press, USA 101: 177–190Google Scholar
  44. Mein P (1999) The late Miocene small mammal succession from France, with emphasis on the Rhône Valley localities. In Agustí J Rook L, Andrews P (eds) Hominoid evolution and climatic change in Europe. Vol. 1: The evolution of Neogene terrestrial ecosystems in Europe. Cambridge University Press, UK: 140–165Google Scholar
  45. Miller KG, Wright JD, Fairbanks RG (1991) Unlocking the icehouse, Oligocene-Miocene oxygen isotopes, eustacis and margin erosion. Journal of Geophysical Research, American Geophysical Union, USA 96(B4): 6829–6848Google Scholar
  46. Moyà-Solà S, Agustí J (1990) Bioevents and mammal successions in the Spanish Miocene. In Lindsay EH Fahlbusch V, Mein P (eds) European Neogene Mammal Chronology, Plenum Press, USA: 357–373Google Scholar
  47. Moyà-Solà S, Quintana J, Alcover JA, Köhler M (1999a) Endemic Island Faunas of the Medirerranean Miocene. In Rössner GE, Heissig K (eds) The Miocene land mammals of Europe. K Verlag Dr Friedrich Pfeil, Germany: 435–442Google Scholar
  48. Moyà-Solà S, Köhler M, Rook L (1999b) Evidence of hominid-like adaptations to precision grip in the hand of Oreopithecus. Proceedings National Academy of Sciences of the USA 96: 56–59Google Scholar
  49. Pérez-Vila M-J, Fauquette S, Suc J-P, Bessedik M (2001) Palynological contribution to estimation of Mio-Pliocene altitude of eastern Pyrenees. In Agustí J, Oms O (eds) Late Miocene to early Pliocene environments and ecosystems. Abstracts of the 2nd EEDEN Plenary Workshop Sabadell (Spain) 15–17 November 2001: 52–54Google Scholar
  50. Raup DM, Crick RE (1979) Measurement of faunal similarity in paleontology. Journal of Paleontology, The Paleontological Society, USA 53(5): 1213–1227Google Scholar
  51. Rivas-Carballo R, Valle MF (1986) Nuevas aportaciones a la palinología del Terciario de la Cuenca del Duero. Torremormojón (Palencia). Stvdia Geologica Salmanticensia, Ediciones Universidade de Salamanca, Spain 22: 133–145Google Scholar
  52. Rögl F (1999) Mediterranean and Paratethys paleogeography during the Oligocene and Miocene. In Agustí J Rook L, Andrews P (eds) Hominoid evolution and climatic change in Europe. Vol. 1: The evolution of Neogene terrestrial ecosystems in Europe. Cambridge University Press, UK: 8–23Google Scholar
  53. Rögl F (2001) Mid-Miocene Circum-Mediterranean paleogeography. In Latal C, Piller WE (eds) Environment and Ecosystem Dynamics of the Eurasian Neogene. Stratigraphy & Paleogeography, Workshop Graz 15–18.3.2001. Berichte des Institutes für Geologie und Paläontologie der Karl-Franzens-Universität Graz 4: 49–59Google Scholar
  54. Rook L Abazzi L, Engesser B (1999) An overview on the Italian Miocene land mammal faunas. In Agustí J Rook L, Andrews P (eds) Hominoid evolution and climatic change in Europe. Vol. 1: The evolution of Neogene terrestrial ecosystems in Europe. Cambridge University Press, UK: 191–205Google Scholar
  55. Sanz de Siria A (1993) Datos sobre la paleoclimatología y paleocología del Neógeno del Vallès-Penedès según las macrofloras halladas en la cuenca y zonas próximas. Paleontologia i Evolució, Spain 26–27: 281–289Google Scholar
  56. Sanz de Siria A (1994) La evolución de las paleofloras en las cuencas cenozoicas catalanas. Acta Geologica Hispánica, Spain 29(2–4): 169–189Google Scholar
  57. Sanz de Siria A (1997) La macroflora del Vallesiense superior de Terrassa (Barcelona). Paleontologia i evolució, Spain 30–31: 247–268Google Scholar
  58. Tobien H (1967) Subdivision of Pontian mammal faunas. Comitee Mediterranean Neogene Stratigraphy, Proceedings IV Session, Bologna 1967. Giornale di Geologia, Italy (2)35: 1–5Google Scholar
  59. Turco E, Hilgen FJ, Lourens LJ, Shackleton NJ, Zachariesche WJ (2001) Punctuated evolution of global climate during the late Middle to early Late Miocene: High-resolution planktonik foraminiferal and oxygen isotopes records from the Mediterranean. Paleoceanography, American Geophysical Union, USA 16(4): 405–423Google Scholar
  60. Van Dam JA (1997) The small mammals from the upper Miocene of the Teruel-Alfambra region (Spain): Paleobiology and paleoclimatic reconstructions. Geologica Ultraiectina, Mededelingen van de Faculteit Aardwetenschappen Universiteit Utrecht, The Netherlands 156: 1–204Google Scholar
  61. Van Dam JA, Weltje GJ (1999) Reconstruction of the late Miocene climate of Spain using rodent paleocommunity succesions: an application of end-member modelling. Paleogeography, Paleoclimatology, Paleoecology, Elsevier, The Netherlands 151: 267–305Google Scholar
  62. Van der Meulen AJ, Daams R (1992) Evolution of Early-Middle Miocene rodent faunas in relation to long-term paleoenviromental changes. Paleogeography, Paleoclimatology, Paleoecology, Elsevier, The Netherlands 93: 227–253Google Scholar
  63. Van Valen LM (1984) A resetting of Phanerozoic community evolution. Nature, Nature Publishing Group, UK 307: 50–52Google Scholar
  64. Vrba ES (1985) Environment and evolution: Alternative causes of the temporal distribution of evolutionary events. South African Journal of Science, National Research Foundation, South Africa 81: 229–236Google Scholar
  65. Vrba ES (1995) The fossil record of African antelopes (Mammalia, Bovidae) in relation to human evolution and paleoclimate. In Vrba ES, Denton GH Partridge TC, Burckle LH (eds) Paleoclimate and evolution, with emphasis on human origins. Yale University Press, USA 385–424Google Scholar
  66. Zubakov VA, Borzenkova II (1990) Global Paleoclimate of the Late Cenozoic. Elsevier, The Netherlands 1–456Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Isaac Casanovas-Vilar
    • 1
  • Salvador Moyá-Solá
    • 1
  • Jordi Agustí
    • 1
  • Meike Köhler
    • 1
  1. 1.Institut de Paleontologia Miquel Crusafont (Diputació de Barcelona-Unidad Asociada CSIC) Escola Industrial(Spain)

Personalised recommendations