Skip to main content

Glacial Retreat and its Influence on Migration of Mitochondrial Genes in the Long-toed Salamander (Ambystoma macrodactylum) in Western North America

  • Chapter

Abstract

The long-toed salamander (Ambystoma macrodactylum) is a widespread inhabitant of the Cordilleran Region of western North America. The Cordilleran ice sheet retreated when climates changed at the end of the Pleistocene. This setting provides a natural experiment for phylogeographic tests of post-glacial migration. As migration occurs, the demographics of populations change; these changes are imprinted into the gene frequencies of descendant populations. Species ranges shifted as migrants inhabited tolerable post-glacial environments, and new genealogical mixtures formed as populations came into secondary contact. Historical climate, ecology, and geography impacted the range dynamics and consequent population genetics of the long-toed salamander. This systematic study of mitochondrial DNA tests biogeographic patterns using phylogenetic trees, nested phylogeographic clade analysis, and mismatch distributions. Phylogenetic congruence is tested first in a partitioned versus an intersected arrangement of two mitochondrial loci, including 95 cytochrome b and 103 intergenic spacer sequences. Nested phylogeographic clade analysis provides an explicit system to correlate lineages and their mismatch distributions. Although mismatch distributions operate ideally in high-migration species, and the long-toed salamander migrates little among contemporary populations, there is reason to suspect that waif dispersal increased with changes in fluvial dynamics following glacial retreat. Clade patterns support a deep vicariance across the central interior and reveal seven Pleistocene refugia. Waves in mismatch distributions indicate that population sizes increased in lineages residing in refugia near the ice margins at this time. The phylogenetic identities that spread away from refugia and their genetic patterns are placed into a historical pre- and post-glaciated context.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alford R, Richards S (1999) Global amphibian declines: A problem in applied ecology. Annual Review of Ecology and Systematics 30: 133–165

    Article  Google Scholar 

  • Alt D, Hyndman D (1995) Northwest Exposures: A Geological Story of the North West. Mountain Press Publishing Company, Missoula, Montana

    Google Scholar 

  • Anderson PK (1960) Ecology and evolution in Island populations of salamanders in the San Francisco Bay region. Ecological Monographs 30: 359–385

    Google Scholar 

  • Anderson J, Graham R (1967) Vertical migration and stratification of larval Ambystoma. Copeia 1967: 371–374

    Google Scholar 

  • Anderson (2004) Postglacial population history of the common shrew (Sorex araneus) in Fennoscandia. Molecular studies of recolonisation, sex-biased gene flow and the formation of chromosome races. Acta Universitatis Uppsaliensis. Comprehensive summaries of Uppsala dissertations from the Faculty of Science and Technology. 986. 56 pp. Uppsala, Sweden

    Google Scholar 

  • Arbogast B, Kenagy G (2001) Comparative phylogeography as an integrative approach to historical biogeography. Journal of Biogeography 28: 819–825

    Article  Google Scholar 

  • Avise J (1994) Molecular Markers, Natural History and Evolution. Chapman and Hall, New York

    Google Scholar 

  • Avise J (1996a) Introduction: The scope of conservation genetics. In Avise J, Hamrick J (eds) Conservation Genetics: Case Histories from Nature. Chapman and Hall, New York, NY 1–9

    Google Scholar 

  • Avise J (1996b) Towards a regional conservation genetics perspective: Phylogeography of faunas in the southeastern United States. In Avise J, Hamrick J (eds) Conservation Genetics: Case Histories from Nature. Chapman and Hall, New York, NY 431–470

    Google Scholar 

  • Avise JC (2000) Phylogeography: The History and Formation of Species. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Avise J, Ball R, Arnold J (1988) Current versus historical population sizes in vertebrate species with high gene flow: A comparison based on mitochondrial DNA lineages and inbreeding theory for neutral mutations. Molecular Biology and Evolution 5: 331–344

    Google Scholar 

  • Baily, J (1948) Supplementary observations on the geographic variation of Ambystoma macrodactylum. Herpetologica 4: 171–174

    Google Scholar 

  • Baker V (1983) Late-Pleistocene fluvial systems. In Porter SC (ed) Late-Quaternary Environments of the United States. University of Minnesota Press, Minneapolis 115–129

    Google Scholar 

  • Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Molecular Ecology 13: 729–744

    Article  Google Scholar 

  • Beneski J, Zalisko E, Larsen J (1986) Demography and migratory patterns of the eastern long-toed salamander, Ambystoma macrodactylum columbianum. Copeia 1986: 398–408

    Google Scholar 

  • Benkman C, Holimon W, Smith J (2001) The influence of a competitor on the geographic mosaic of coevolution between crossbills and lodgepole pine. Evolution 55: 282–294

    Google Scholar 

  • Bermingham E, Moritz C (1998) Comparative phylogeography: Concepts and applications. Molecular Ecology 7: 367–369

    Google Scholar 

  • Berven K, Gill D, Smith-Gill S (1979) Counter gradient selection in the green frog, Rana clamitans. Evolution 33: 609–623

    Google Scholar 

  • Branco M, Monnerot M, Ferrand N, Templeton AR (2002) Postglacial dispersal of the European rabbit (Oryctolagus cuniculus) on the Iberian peninsula reconstructed from nested clade and mismatch analyses of mitochondrial DNA genetic variation. Evolution 56: 792–803

    Google Scholar 

  • Brodie E, Ridenhour B, Brodie E (2002) The evolutionary response of predators to dangerous prey: Hotspots and coldspots in the geographic mosaic of coevolution between garter snakes and newts. Evolution 56: 2067–2082

    Google Scholar 

  • Brosou-Aris S, Excoffier L (1996) The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism. Molecular Biology and Evolution 13: 494–504

    Google Scholar 

  • Brunsfeld S, Sullivan J, Soltis D, Soltis P (2001) Comparative phylogeography of north-western North America: A synthesis. In Silverton J, Antonovics J (eds) Integrating Ecology and Evolution in a Spatial Context. Fourteenth Special Symposium of the British Ecological Society. British Ecological Society, Blackwell Science Ltd. 319–339

    Google Scholar 

  • Bury R, Pearl C (1999) Klamath-siskiyou herpetofauna: Biogeographic patterns and conservation strategies. Natural Areas Journal 19: 341–350

    Google Scholar 

  • Byun A, Koop B, Reimchen T (1997) North American black bear mtDNA phylogeography: Implications for morphology and the Haida Gwaii glacial refugium controversy. Evolution 51: 1647–1653

    Google Scholar 

  • Carson H, Templeton A (1984) Genetic revolutions in relation to speciation phenomena: The founding of new populations. Annual Review of Ecology and Systematics 15: 97–131

    Article  Google Scholar 

  • Castelloe J, Templeton A (1994) Root probabilities for intraspecific gene trees under neutral coalescent theory. Molecular Phylogenetics and Evolution 3: 102–113

    Article  Google Scholar 

  • Church SA, Kraus JM, Mitchell JC, Church DR, Taylor DR (2003) Evidence for multiple Pleistocene refugia in the postglacial expansion of the eastern tiger salamander, Ambystom tigrinum tigrinum. Evolution 57: 372–383

    Google Scholar 

  • Clague J, James T (2002) History and isostatic effects of the last ice sheet in southern British Columbia. Quaternary Science Reviews 21: 71–87

    Article  Google Scholar 

  • Clayton D (1984) Transcription of the mammalian mitochondrial genome. Annual Review of Biochemistry 53: 573–594

    Article  Google Scholar 

  • Conroy C, Cook A (2000) Phylogeography of a post-glacial colonizer: Microtus longicaudus (Rodentia: Muridae). Molecular Ecology 9: 165–175

    Article  Google Scholar 

  • Cox A, Hebert P (2001) Colonization, extinction, and phylogeographic patterning in a freshwater crustacean. Molecular Ecology 10: 371–386

    Article  Google Scholar 

  • Crandall, KA (1994) Intraspecific cladogram estimation: Accuracy at higher levels of divergence. Systematic Biology 43: 222–235

    Google Scholar 

  • Crandall KA (1996) Multiple interspecies transmissions of human and simian T-cell leukemia/lymphoma virus type I sequences. Molecular Biology and Evolution 13: 115–131

    Google Scholar 

  • Crandall KA, Templeton AR (1993) Empirical tests of some predictions from coalescent theory with applications to intra-specific phylogeny reconstruction. Genetics 134: 959–969

    Google Scholar 

  • Crandall KA, Templeton AR (1996) Applications of intraspecific phylogenetics. In Harvey PH, Brown AJL, Smith JM, Nee S (eds) New Uses for New Phylogenies, Oxford University Press, Oxford 81–99

    Google Scholar 

  • Cruzan MB, Templeton AR (2000) Paleoecology and coalescence: phylogeographic analysis of hypotheses from the fossil record. Trends in Ecology and Evolution 15: 491–496

    Article  Google Scholar 

  • Darlington PJ (1957) Zoogeography. JC Wiley & Sons, New York.

    Google Scholar 

  • DaSilva M, Patton J (1998) Molecular phylogeography and the evolution and conservation of Amazonian mammals. Molecular Ecology 7: 475–486

    Google Scholar 

  • Daubenmire R (1975) Floristic plant geography of eastern Washington and northern Idaho. Journal of Biogeography 2: 1–18

    Google Scholar 

  • Demboski J, Cook J (2001) Phylogeography of the dusky shrew, Sorex monticolus (Insectivora:Soricidae): Insight into deep and shallow history in northwestern North America. Molecular Ecology 10: 1227–1240

    Article  Google Scholar 

  • Demboski J, Stone K, Cook J (1999) Further perspectives on the Haida Gwaii glacial refugium. Evolution 53: 2008–2012

    Google Scholar 

  • Donovan M, Semlitsch R, Routman E (2000) Biogeography of the southeastern United States: A comparison of salamander phylogeographic studies. Evolution 54: 1449–1456

    Google Scholar 

  • Duellman WE, Sweet SS (1999) Distribution patterns of amphibians in the neararctic region of North America. In Duellman WE (ed), Patterns and Distribution of Amphibians: A Global Perspective. The Johns Hopkins University Press, Baltimore and London 31–109

    Google Scholar 

  • Duellman WE, Trueb L (1986) Biology of Amphibians. McGraw-Hill Book Co., New York.

    Google Scholar 

  • Dynesius M, Jansson R (2000) Evolutionary consequences of changes in species’ geographical distributions driven by milankovitch climate oscillations. Proceedings of the National Academy of Sciences 97: 9115–9120

    Article  Google Scholar 

  • Endler J (1977) Geographic Variation, Speciation, and Clines. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Excoffier L (2004) Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Molecular Ecology 13: 853–864

    Google Scholar 

  • Farris J, Källersjö M, Kluge A, Bult C (1994) Testing significance of incongruence. Cladistics 10: 315–319

    Google Scholar 

  • Felsenstein J (1983) Parsimony in systematics: Biological and statistical issues. Annual Review of Ecology and Systematics 14: 313–333

    Article  Google Scholar 

  • Ferguson DE (1961) The geographic variation of Ambystoma macrodactylum Baird, with the description of two new subspecies. The American Midland Naturalist 65: 311–338

    Google Scholar 

  • Fisher R, Shaffer H (1996) The decline of amphibians in California’s great central valley. Conservation Biology 10: 1387–1397

    Article  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915–925

    Google Scholar 

  • Fukumoto J, Herrero S (1998) Observations of the long-toed salamander, Ambystoma macrodactylum, in Waterton Lakes National Park, Alberta. The Canadian Field-Naturalist 112: 579–585

    Google Scholar 

  • Funk W, Tallmon D, Allendorf F (1999) Small effective population size in the long-toed salamander. Molecular Ecology 8: 1633–1640

    Article  Google Scholar 

  • García-Parìs M, Alcobendas M, Buckley D, Wake D (2003) Dispersal of viviparity across contact zones in Iberian populations of fire salamanders (Salamandra) inferred from discordance of genetic and morphological traits. Evolution 57: 129–143

    Google Scholar 

  • Good J, Sullivan J (2001) Phylogeography of the red-tailed chipmunk (Tamias ruficaudus), a northern Rocky Mountain endemic. Molecular Ecology 10: 2683–2695

    Article  Google Scholar 

  • Gould S, Johnston R (1972) Geographic variation. Annual Review of Ecology and Systematics 3: 457–498

    Article  Google Scholar 

  • Gould S, Vrba E (1982) Exaptation — a missing term in the science of form. Paleobiology 8: 4–15

    Google Scholar 

  • Graham KL, Powell GL (1999) Status of the long-toed salamander Ambystoma macrodactylum in Alberta. Alberta Wildlife Status Report No. 22, Edmonton, Alberta

    Google Scholar 

  • Green D, Campbell R (1984) The Amphibians of British Columbia. Handbook No. 45. Royal British Columbia Museum, Vancouver, British Columbia.

    Google Scholar 

  • Green D, Sharbel T, Kearsley J, Kaiser H (1996) Postglacial range fluctuation, genetic subdivision and speciation in Western North American Spotted Frog complex, Rand pretiosa. Evolution 50: 374–390

    Google Scholar 

  • Hamilton IM, Graham L, Powell GL, Russell AP (1996) The range of long-toed salamanders in Northwestern Alberta. Alberta Environmental Protection, Fish and Wildlife Service, Edmonton, Alberta

    Google Scholar 

  • Hewitt G (1999) Post-glacial recolonization of European biota. Biological Journal of the Linnean Society 68: 87–112

    Article  Google Scholar 

  • Hewitt G, Ibrahim K (2001) Inferring glacial refugia and historical immigrations with molecular phylogenies. In Silverton J, Antonovics J (eds), Integrating Ecology and Evolution in a Spatial Context. Fourteenth Special Symposium of the British Ecological Society. British Ecological Society, Blackwell Science Ltd. 271–294

    Google Scholar 

  • Hennig W (1966) Phylogenetic Systematics. University of Illinois Press, Urbana

    Google Scholar 

  • Heusser C (1983) Vegetational history of the Northwestern United States, including Alaska. In Porter SC (ed), Late-Quaternary Environments of the United States, University of Minnesota Press, Minneapolis 239–258

    Google Scholar 

  • Hillis DM, Bull JD (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42: 182–192

    Google Scholar 

  • Hipp AL, Hall HC, Systma KJ (2004) Congruence versus phylogenetic accuracy: revisiting the incongruent length difference test. Systematic Biology 53: 81–89

    Article  Google Scholar 

  • Hodge R (1976) Amphibians and Reptiles in Alaska, The Yukon and Northwest Territories. Alaska Northwest Publishing Company, Anchorage, Alaska

    Google Scholar 

  • Houlahan J, Findlay C, Schmidt B, Meyer A, Kuzmin S (2000) Quantitative evidence for global amphibian population declines. Nature 404: 752–755

    Article  Google Scholar 

  • Howard J, Wallace R (1981) Microgeographical variation of electrophoretic loci in populations of Ambystoma macrodactylum columbianum (Caudata: Ambystomatidae). Copeia 1981: 466–471

    Google Scholar 

  • Howard J. Wallace R (1983) Critical thermal maxima in populations of Ambystoma macrodactylum from different elevations. Journal of Herpetology 173: 400–402

    Google Scholar 

  • Howard J, Wallace R (1984) Life history characteristics of populations of the long-toed salamander (Ambystoma macrodactylum) from different altitudes. The American Midland Naturalist 113: 361–373

    Google Scholar 

  • Hudson R (1989) How often are polymorphic restriction sites due to a single mutation? Theoretical Population Biology 36: 23–33

    Article  Google Scholar 

  • Janzen F, Krenz J, Haselkorn T, Brodie E Jr, Brodie E III (2002) Molecular phylogeography of common garter snakes (Thamnophis sirtalis) in western North America: Implications for regional historical forces. Molecular Ecology 11: 1739–1751

    Article  Google Scholar 

  • Jarrett R, Malde H (1987) Paleodischarge of the late Pleistocene Bonneville flood, Snake River, Idaho, computed from new evidence. Geological Society of America Bulletin 99: 127–134

    Article  Google Scholar 

  • Jockusch E, Wake D (2002) Falling apart and merging: Diversification of slender salamanders (plethodontidae: Batrachoseps) in the American West. Biological Journal of the Linnean Society 76: 361–391

    Article  Google Scholar 

  • Johnson N, Marten J (1989) Evolutionary genetics of flycatchers. III. Variation in Epidonax hammondii (Aves: Tyrannidae). Canadian Journal of Zoology 69: 232–238

    Google Scholar 

  • Josenhans H, Fedje D, Conway K, Barrie J (1995) Post-glacial sea levels on the western Canadian continental shelf: Evidence for rapid change, extensive subaerial exposure, and early human habitation. Marine Geology 125: 73–94

    Article  Google Scholar 

  • Kezer J, Farner D (1985) Life history patterns of the salamander Ambystoma macrodactylum in the high Cascade Mountains of southern Oregon. Copeia 1955: 127–131

    Google Scholar 

  • Knowles L (2001) Did the Pleistocene glaciations promote divergence? Tests of explicit refugial models in montane grasshoppers. Molecular Ecology 10: 691–701

    Article  Google Scholar 

  • Kumar S, Tamura K, Jakobsen I, Nei M (2001) MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics 17 1244–1245.

    Article  Google Scholar 

  • MacArthur R, Connell J (1967) The Biology of Populations. John Wiley and Sons, Inc., New York

    Google Scholar 

  • Mandryk C, Josenhans H, Fedge D, Mathewes R (2001) Late Quaternary paleoenvironments of northwestern North America: Implications for inland versus coastal migration routes. Quaternary Science Reviews 20: 301–314

    Article  Google Scholar 

  • Marnell LF (1997) Herpetofauna of Glacier National Park. Northwestern Naturalist 78: 17–33

    Google Scholar 

  • McKnight ML, Shaffer HB (1997) Large, rapidly evolving intergenic spacers in the mitochondrial DNA of the salamander family Ambystomatidae (Amphibia: Caudata). Molecular Biology and Evolution 14: 1167–1176

    Google Scholar 

  • Meyer G, Leidecker M (1999) Fluvial terraces along the middle fork Salmon river, Idaho, and their relation to glaciation, landslide dams, and incision rates: A preliminary analysis and river-mile guide. In Hughes S, Thackray G (eds) Guidebook to the Geology of Eastern Idaho. Idaho Museum of Natural History, Pocatello 219–335

    Google Scholar 

  • Milner AR (1983) The biogeography of salamanders in the Mesozoic and early Caenozoic: A cladistic-vicariance model. In Sims RW, Price JH, Whalley PES (eds) Evolution, Time and Space: The Emergence of the Biosphere. Academic Press, London 431–468

    Google Scholar 

  • Moore WS (1995) Inferring phylogenies from mtDNA variation: Mitochondrialgene trees versus nuclear-gene trees. Evolution 49: 718–726

    Google Scholar 

  • Moritz C, Schneider CJ, Wake DB (1992) Evolutionary relationships within the Ensatina eschscholtzii complex confirm the ring species interpretation. Systematic Biology 41: 273–291

    Google Scholar 

  • Nelson SJ, Powell GL, Russell AP (1995) Population survey of the long-toed salamander (Ambystoma macrodactylum) in southwestern Alberta. Alberta Environmental Protection, Fish and Wildlife Service, Edmonton, Alberta

    Google Scholar 

  • Nielson M, Lohman K, Sullivan J (2001) Phylogeography of the Tailed Frog (Ascaphus truei): Implications for the Biogeography of the Pacific Northwest. Evolution 55: 147–160

    Google Scholar 

  • Nussbaum R, Bordie E, Storm R (1983) Amphibians and Reptiles of the Pacific Northwest. University of Idaho Press, Moscow, Idaho

    Google Scholar 

  • Ohta T (1992) The nearly neutral theory of molecular evolution. Annual Review of Ecology and Systematics 23: 263–286

    Article  Google Scholar 

  • O’Reilly P, Reimchen T, Beech R, Strobeck C (1993) Mitochondrial DNA in Gasterosteus and a Pleistocene glacial refugium on the Queen Charlotte Islands, British Columbia. Evolution 47: 678–684

    Google Scholar 

  • Oseen K, Powell GL, Russell AP (1995a) The distribution of the long-toed salamander (Ambystoma macrodactylum) in southwestern Alberta. Alberta Environmental Protection, Fish and Wildlife Service, Edmonton, Alberta

    Google Scholar 

  • Oseen K, Powell GL, Russell AP (1995b) The distribution of the long-toed salamander (Ambystoma macrodactylum) in southwestern Alberta. Alberta Environmental Protection, Fish and Wildlife Service, Edmonton, Alberta

    Google Scholar 

  • Pauken R, Metter D (1971) Geographic representation of morphologic variation among populations of Ascaphus truei Stejneger. Systematic Zoology 20: 434–441

    Google Scholar 

  • Petranka J (1998) Salamanders of the United States and Canada. Smithsonian Institution Press, Washington

    Google Scholar 

  • Pielou E (1991) After the Ice Age: The Return of Life to Glaciated North America. University of Chicago Press, Chicago

    Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: Testing the model of DNA substitution. Bioinformatics 14: 817–818

    Article  Google Scholar 

  • Posada D, Crandall KA, Templeton AR (2000) GeoDis: A program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Molecular Ecology 9: 487–488

    Article  Google Scholar 

  • Posada D, Crandall KA (2001) Intraspecific gene genealogies: Trees grafting into networks. Trends in Ecology and Evolution 16: 37–45

    Article  Google Scholar 

  • Powell G, Oseen K, Russell A (1996) Volunteer amphibian monitoring in Alberta 1992–1994: The results of the pilot project. Alberta Environmental Protection, Fish and Wildlife Division, Edmonton, Alberta

    Google Scholar 

  • Powell G, Russell AP (1996) The long-toed salamander in the Bow corridor: A preliminary report. Alberta Environmental Protection, Fish and Wildlife Division, Edmonton, Alberta

    Google Scholar 

  • Powell G, Russell A, James J, Nelson S, Watson S (1997a) Population biology of the long-toed salamander, Ambystoma macrodactylum, in the front range of Alberta. In Green D (ed) Amphibians in Decline: Canadian Studies of a Global Problem. Society for the Study of Amphibians and Reptiles 37–44

    Google Scholar 

  • Powell GL, Russell AP, Nelson SJ, Hamilton IM, Graham KL (1997b) The status of the long-toed salamander Ambystoma macrodactylum in Alberta. Alberta Environmental Protection, Fish and Wildlife Service, Edmonton, Alberta

    Google Scholar 

  • Ray N, Currat M, Excoffier L (2003) Intra-deme molecular diversity in spatially expanding populations. Molecular Biology and Evolution 20: 76–86

    Google Scholar 

  • Richardson B, Brunsfeld S, Klopfenstein N (2002) DNA from bird-dispersed seed and wind-disseminated pollen provides insights into postglacial colonization and population genetic structure of whitebark pine (Pinus albicaulis). Molecular Ecology 11: 215–227

    Article  Google Scholar 

  • Rogers AR (1995) Genetic evidence for a Pleistocene population explosion. Evolution 49: 608–615

    Google Scholar 

  • Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution 9: 552–569

    Google Scholar 

  • Russell R, Anderson J (1956) A disjunct population of the long-toed salamander from the coast of California. Herpetologica 12: 137–140

    Google Scholar 

  • Russell A, Powell G, Hall D (1996) Growth and age of Alberta long-toed salamanders (Ambystoma macrodactylum krausai): A comparison of two methods of estimation. Canadian Journal of Zoology 74: 397–412

    Google Scholar 

  • Schneider C, Cunningham M, Moritz C (1998) Comparative phylogeography and the history of endemic vertebrates in the wet tropic rainforests of Australia. Molecular Ecology 7: 487–498

    Article  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) ARLEQUIN. Version. 2.000: A Software for Population Genetics Data Analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

    Google Scholar 

  • Sheppard R (1977) The ecology and home range movements of Ambystoma macrodactylum krausei (Amphibia: Urodela). Master’s thesis, University of Calgary, Calgary, Alberta

    Google Scholar 

  • Soltis D, Gitzendanner M, Strenge D, Soltis P (1997) Chloroplast DNA intraspecific phylogeography of plants from the pacific northwest of North America. Plant Systematics and Evolution 206: 353–373

    Article  Google Scholar 

  • Stebbins R (1951) Amphibians of Western North America. University of California Press, Berkeley and Los Angeles

    Google Scholar 

  • Stebbins R (2003) Western Reptiles and Amphibians, 3rd Edition. Houghton Mifflin, New York

    Google Scholar 

  • Stone K, Cook J (2000) Phylogeography of black bears (Ursus americanus) of the Pacific Northwest. Canadian Journal of Zoology 78: 1218–1223

    Article  Google Scholar 

  • Stone K, Flynn R, Cook J (2002) Post-glacial colonization of northwestern North America by the forest-associated American marten (Martes americana, Mammalia: Carnivora: Mustelidae). Molecular Ecology 11: 2049–2063

    Article  Google Scholar 

  • Swofford DL (2000) PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods) Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595

    Google Scholar 

  • Tallmon DA, Funk WC, Dunlap WW, Allendorf FW (2000) Genetic differentiation among long-toed salamander Ambystoma macrodactylum populations. Copeia 2000: 27–35

    Google Scholar 

  • Tan A, Wake DB (1995) MtDNA phylogeography of the California newt, Taricha torosa (Caudata, Salamandridae). Molecular Phylogenetics and Evolution 4: 383–394

    Article  Google Scholar 

  • Taylor D (1985) Evolution of freshwater drainages and molluscs in western North America: Interdisciplinary studies of the Clarkia fossil beds of northern Idaho. In Smiley CJ, Leviton A, Berson M (eds) Late Cenozoic History of the Pacific Northwest. Department of Herpetology, California Academy of Sciences 265–348

    Google Scholar 

  • Taylor D, Pollard S, Louie D (1999) Mitochondrial DNA variation in bull trout (Salvelinus confluentus) from northwestern North America: Implications for zoogeography and conservation. Molecular Ecology 8: 1155–1170

    Google Scholar 

  • Templeton A, Georgiadis N (1996) A landscape approach to conservation genetics: Conserving evolutionary processes in the African bovidae. In Avise J, Hamrick J (eds), Conservation Genetics: Case Histories from Nature. Chapman and Hall, New York, New York 398–430

    Google Scholar 

  • Templeton A, Crandall KA, Sing C (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132: 619–633

    Google Scholar 

  • Templeton AR, Routman E, Phillips C (1995) Separating population structure from population history: A cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics 140: 767–782

    Google Scholar 

  • Templeton AR (2004) Statistical phylogeography: methods of evaluating and minimizing inference errors. Molecular Ecology 13: 789–809

    Article  Google Scholar 

  • Thompson MD, Ray N, Russell AP (unpublished) Phylogeography of the long-toed salamander (Ambystoma macrodactylum): Systematics and statistical biogeography of mitochondrial genes

    Google Scholar 

  • Titus T, Gains M (1991) Genetic variation in coastal and montane populations of Ambystoma gracile, (Caudata: Ambystomatidae). Occasional papers of the Museum of Natural History, University of Kansas, Lawrence 141: 1–12

    Google Scholar 

  • Tzedakis P, Lawson I, Frogley M, Hewitt G, Preece R (2002) Buffered tree population changes in a quaternary refugium: evolutionary implications. Science 297: 2044–2047

    Article  Google Scholar 

  • Verbeylen G, De Bruyn L, Adriaensen F, Matthysen E (2003) Does matrix resistance influence Red squirrel (Sciurus vulgaris L. 1758) distribution in an urban landscape? Landscape Ecology 18: 791–805

    Article  Google Scholar 

  • Waitt R, Thorson R (1983) The Cordilleran ice sheet in Washington, Idaho, and Montana. In Porter SC (ed) Late-Quaternary Environments of the United States, University of Minnesota Press, Minneapolis 53-70

    Google Scholar 

  • Walker IR, Pellatt MG (2003) Climate change in coastal British Columbia — A paleoenvironmental perspective. Canadian Water Resources Journal 28: 531–566

    Article  Google Scholar 

  • Walsh R (1998) An extension of the known range of the long-toed salamander, Ambystoma macrodactylum in Alberta. Canadian Field Naturalist 112: 331–333

    Google Scholar 

  • Walter R, Epperson B (2001) Geographic pattern of genetic variation in Pinus resinosa: Area of greatest diversity is not the origin of postglacial populations. Molecular Ecology 10: 103–111

    Article  Google Scholar 

  • Warner B, Mathewes R (1982) Ice-free conditions on the Queen Charlotte Islands, British Columbia, at the height of late Wisconsin glaciation. Science 218: 675–677

    Google Scholar 

  • Wilke T, Duncan N (2004) Phylogeographical patterns in the American Pacific Northwest: lessons from the arionid slug Prophysaon coeruleum. Molecular Ecology 13: 2303–2315

    Article  Google Scholar 

  • Williams T, Larsen J (1986) New function for the granular skin glands of the eastern long-toed salamander, Ambystoma macrodactylum columbianum. Journal of Experimental Zoology 239: 329–333

    Article  Google Scholar 

  • Yoder A, Irwin J, Payseur B (2001) Failure of the ILD to determine data combinability for Slow Loris phylogeny. Systematic Biology 50: 408–424

    Article  Google Scholar 

  • Zachos J, Flower B, Paul H (1997) Orbitally paced climate oscillations across the Olicogene/Miocene boundary. Nature 388: 567–570

    Article  Google Scholar 

  • Zamudio K, Savage WK (2003) Historical isolation, range expansion, and secondary contact of two highly divergent mitochondrial lineages in spotted salamanders (Ambystoma maculatum). Evolution 57: 1631–1652

    Google Scholar 

  • Lohmann KJ, Cain SD, Dodge SA, Lohmann CMF (2001) Regional magnetic fields as navigational markers for sea turtles. Science 294: 364–367

    Article  Google Scholar 

  • Lohmann KJ, Lohmann CMF (1998) Migratory mechanisms in marine turtles. Journal of Avian Biology 29: 585–596

    Google Scholar 

  • Lohmann KJ, Lohmann CMF, Ehrhart LM, Bagley DA, Swing T (2004) Geomagnetic map used in sea-turtle navigation. Nature 428: 909–910

    Article  Google Scholar 

  • Lohmann KJ, Salmon M, Wyneken J (1990) Functional autonomy of land and sea orientation systems in sea turtle hatchlings. Biological Bulletin 179: 214–218

    Google Scholar 

  • Lohmann KJ, Swartz AW, Lohmann CMF (1995) Perception of ocean wave direction by sea turtles. Journal of Experimental Biology 198: 1079–1085

    Google Scholar 

  • Lohmann KJ, Witherington BE, Lohmann CMF, Salmon M (1997) Orientation, navigation and natal beach homing in sea turtles. In Lutz PL, Musick JA (eds) The Biology of Sea Turtles. CRC Press, Boca Raton, Florida 107–155

    Google Scholar 

  • Loredo I, VanVuren D, Morrison ML (1996) Habitat use and migration behavior of the California tiger salamander. Journal of Herpetology 30: 282–285

    Google Scholar 

  • Loveridge A (1953) Zoological results of a fifth expedition to East Africa IV Amphibians from Nyasaland and Tete. Bulletin of the Museum of Comparative Zoology, Harvard 110: 325–406

    Google Scholar 

  • Luschi P (2003) Migration and conservation: the case of sea turtles. In Festa-Bianchet M, Apollonio M (eds) Animal Behavior and Wildlife Conservation Island Press, Washington, Corelo and London 49–61

    Google Scholar 

  • Luschi P, Papi F, Liew HC, Chan EH, Bonadonna F (1996) Long-distance migration and homing after displacement in the green turtle (Chelonia mydas): a satellite tracking study. Journal of Comparative Physiology A 178: 447–452

    Article  Google Scholar 

  • Luschi P, Hays GC, Del-Seppia C, Marsh R, Papi F (1998) The navigational feats of green sea turtles migrating from Ascension Island investigated by satellite telemetry. Proceedings of the Royal Society of London, Series B 265: 2279–2284

    Google Scholar 

  • Luschi P, Åkesson S, Broderick AC, Glen F, Godley BJ, Papi F, Hays GC (2001) Testing the navigational abilities of ocean migrants: displacement experiments on green sea turtles (Chelonia mydas). Behavior, Ecology, Sociobiology 50: 528–534

    Google Scholar 

  • Luschi P, Hays GC, Papi F (2003) A review of long-distance movements by marine turtles, and the possible role of ocean currents. Oikos 103: 293–302

    Article  Google Scholar 

  • Luschi P, Hughes GR, Mencacci R, DeBernardi E, Sale A, Broker R, Bouwer M, Papi F (2003) Satellite tracking of migrating loggerhead sea turtles (Caretta caretta) displaced in the open sea. Marine Biology 143: 793–801

    Article  Google Scholar 

  • Lutcavage, M (1996) Planning your next meal: leatherback travel routes and ocean fronts In Keinath JA, Barnard DE, Musick JA, Bell BA (compilers) Proceedings of the 15th Annual Symposium on Sea Turtle Biology and Conservation. NOAA, Technical Memorandum NMFS-SEFSC-387 174–178

    Google Scholar 

  • Madison DM (1997) The emigration of radio-implanted spotted salamanders, Ambystoma maculatum. Journal of Herpetology 31: 542–551

    Google Scholar 

  • Madsen T, Shine R (1996) Seasonal migrations of predators and prey: A study of pythons and rats in tropical Australia. Ecology 77: 149–156

    Google Scholar 

  • Malmgren JC (2002) How does a newt find its way from a pond? Migration patterns after breeding and metamorphosis in Great Crested Newts (Triturus cristatus) and smooth newts (T. vulgaris). Herpetological Journal 12: 29–35

    Google Scholar 

  • Manton M, Karr A, Ehrenfeld DW (1972) Chemoreception in the migratory sea turtle, Chelonia mydas. Biological Bulletin 143: 184–195

    Google Scholar 

  • Marquèz R (1994) Synopsis of the biological data on the Kemp’s Ridley Turtle Lepidochelys kempii (Garman, 1880). NOAA Technical Memorandum NMFS-SEFSC-343 91pp

    Google Scholar 

  • Martinez-Solano I, Goncalves HA, Arntzen JW, García-París M (2004) Phylogenetic relationships and biogeography of midwife toads (Discoglossidae: Alytes). Journal of Biogeography 31: 603–618

    Google Scholar 

  • Martof B (1953) Home range and movements of the green frog, Rana clamitans. Ecology 34: 529–543

    Google Scholar 

  • Martof B (1962) Some observations on the role of olfaction among salientian amphibia. Physiological Zoology 35: 270–272

    Google Scholar 

  • Mathis A, Moore FR (1988) Geomagnetism and the homeward orientation of the box turtle, Terrapene Carolina. Ethology 78: 265–274

    Google Scholar 

  • Mayhew WW (1963) Biology of the granite spiny lizard, Sceloporus orcutti. American Midland Naturalist 69: 310–327

    Google Scholar 

  • McCoy ED, Mushinsky HR, Wilson DS (1993) Pattern in the compass orientation of gopher tortoise burrows at different spatial scales. Global Ecology and Biogeography Letters 3: 33–40

    Google Scholar 

  • McGregor JH, Teska WR (1989) Olfaction as an orientation mechanism in migrating Ambystoma maculatum. Copeia 3: 779–781

    Google Scholar 

  • Meylan AB (1982) Sea turtle migration: evidence from tag returns. In Bjorndal KA (ed) Biology and Conservation of Sea Turtles Smithsonian Institution Press, Washington DC 91–100

    Google Scholar 

  • Meylan AB (1999) Status of the hawksbill turtle (Eretmochelys imbricata) in the Caribbean region. Chelonian Conservation Biology 3: 177–184

    Google Scholar 

  • Meylan AB, Bowen BW, Avise JC (1990) A genetic test of the natal homing versus social facilitation models for Green Turtle migration. Science 248: 724–727

    Google Scholar 

  • Miller JD (1997) Reproduction in sea turtles. Lutz PL, Musick JA (eds) The Biology of Sea Turtles. CRC Press, Boca-Raton, Florida

    Google Scholar 

  • Modha ML (1967) The ecology of the Nile crocodile (Crocodilus niloticus Laurenti) on Central Island, Lake Rudolf. East African Wildlife Journal 5: 74–95

    Google Scholar 

  • Modha ML (1968) Crocodile research project, Central Island, Lake Rudolf: 1967 breeding season. East African Wildlife Journal 6: 148–150

    Google Scholar 

  • Morreale SJ, Standora EA, Paladino FV (1994) Leatherback migrations along deep water bathymetric contours. Schroeder BA, Witherington BE (compilers) Proceedings of the 13th Annual Symposium on Sea Turtle biology and Conservation. NOAA Technical Memorandum NMFS-SEFSC-341 109–110

    Google Scholar 

  • Morreale SJ, Standora EA, Spotila JR, Paladino FV (1996) Migration corridor for sea turtles. Nature 384: 319–320

    Article  Google Scholar 

  • Mortimer JA, Carr A (1987) Reproduction and migration of the Ascension Island green turtles (Chelonia mydas). Copeia 1987: 103–113

    Google Scholar 

  • Mrosovsky N, Kingsmill SF (1985) How turtles find the sea. Zeitschrift für Tierpsychologie 67: 237–256

    Google Scholar 

  • Musick JA, Limpus CJ (1997) Habitat utilization and migration in juvenile sea turtles. Lutz PL, Musick JA (eds) The Biology of Sea Turtles. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Nagelkirken I, Pors LPJJ, Hoetjes P (2003) Swimming behaviour and dispersal patterns of headstarted loggerhead turtles, Caretta caretta. Aquatic Ecology 37: 183–190

    Google Scholar 

  • Neill WT (1971) The Last of the Ruling Reptiles: Alligators, Crocodiles and their Kin. Columbia University Press, London

    Google Scholar 

  • Newcomer RT, Taylor DH, Guttman SI (1974) Celestial orientation in two species of water snakes (Natrix sipedon and Regina septemvittata). Herpetologica 30: 194–200

    Google Scholar 

  • Nichols WJ, Resendiz A, Seminoff JA, Resendiz B (2000) Transpacific migration of a loggerhead turtle monitored by satellite telemetry. Bulletin of Marine Science 67: 937–947

    Google Scholar 

  • Nietschmann B (1981) Following the underwater trail of a vanishing species, the hawksbill turtle. National Geographi Society Research Reports 13: 459–480

    Google Scholar 

  • Orr RF (1982) Vertebrate Biology 5th Ed. Saunders College Publishing, Philadelphia

    Google Scholar 

  • Ouboter PE, Nanhoe LM (1988) Habitat selection and migration of Caiman crocodilus crocodilus in a swamp and swamp-forest habitat in northern Suriname. Journal of Herpetology 22: 283–294

    Google Scholar 

  • Palis JG (1997) Breeding migration of Ambystoma cingulatum in Florida. Journal of Herpetology 31: 71–78

    Google Scholar 

  • Palo JU, Lesbarreres D, Schmeller DS, Primmer CR, Merila J (2004) Microsatellite marker data suggest sex-biased dispersal in the common frog Rana temporaria. Molecular Ecology 13: 2865–2869

    Google Scholar 

  • Papi F (1992) Animal Homing. Chapman and Hall, London

    Google Scholar 

  • Papi F, Luschi P (1996) Pinpointing “Isla Meta”: The case of sea turtles and albatrosses. Journal of Experimental Biology 199: 65–71

    Google Scholar 

  • Papi F, Luschi P, Crosio E, Hughes GR (1997) Satellite tracking experiments on the navigational ability and migratory behaviour of the loggerhead turtle, Caretta caretta. Marine Biology 129: 215–220

    Article  Google Scholar 

  • Papi F, Luschi P, Åkesson S, Capogrossi S, Hays GC (2000) Open-sea migration of magnetically disturbed sea turtles. Journal of Experimental Biology 203: 3435–3443

    Google Scholar 

  • Parmenter CJ (1993) Australian sea turtle research and conservation and management: a 1993 status review. In Lunney D, Ayers D (eds) Herpetology in Australia: A Diverse Discipline. Transactions of the Royal Zoological Society of New South Wales, Mosmon, New South Wales, Australia 321–325

    Google Scholar 

  • Parmenter CJ (1994) Species review: the flatback turtle, Natator depressa. James R (ed) Proceedings of the Australian Marine Turtle Conservation Workshop (1990). Australian Nature Conservation Agency, Canberra 60–62

    Google Scholar 

  • Pasenen S, Sorjonen A (1995) An orientation experiment conducted during autumn migration of the common frog (Rana temporaria). Memoranda Societas Fauna Flora Fennica 71: 113–117

    Google Scholar 

  • Pauly GB, Hillis DA, Cannatella DC (2004) The history of a Nearctic colonization: molecular phylogenetics and biogeography of the Nearctic toads (Bufo). Evolution 58: 2517–2535

    Google Scholar 

  • Pearson PG (1955) Population ecology of the spade-foot toad, Scaphiopus h. holbrooki (Harlan). Ecological Monographs 25: 233–267

    Google Scholar 

  • Pearson PG (1957) Further notes on the population ecology of the spadefoot. Ecology 38: 580–586

    Google Scholar 

  • Peters A, Verhoeven KJF (1994) Impact of artificial lighting on the seaward orientation of hatchling loggerhead turtles. Journal of Herpetology 28: 112–114

    Google Scholar 

  • Petranka JW (1998) Salamanders of the United States and Canada. Smithsonian Institution Press, Washington

    Google Scholar 

  • Phillips CA, Sexton OJ (1989) Orientation and sexual differences during the breeding migration of the spotted salamander, Ambystoma maculatum. Copeia 1989: 17–22

    Google Scholar 

  • Phillips JB (1977) Use of the earth’s magnetic field by orienting cave salamanders (Erycea lucifuga). Journal of Comparative Physiology A 121: 273–288

    Google Scholar 

  • Phillips JB (1986a) Magnetic compass orientation in the Eastern red-spotted newt (Notophthalmus viridescens). Journal of Comparative Physiology A 158: 103–109

    Article  Google Scholar 

  • Phillips JB (1987) Laboratory studies of homing orientation in the eastern redspotted newt, Notophthalmus viridescens. Journal of Experimental Biology 131: 215–229

    Google Scholar 

  • Phillips JB (1998) Magnetoreception. In Heatwole H, Dawley EM (eds) Amphibian Biology Vol. 3 Sensory Perception. Surrey Beatty and Sons, Chipping Norton, New South Wales, Australia 954–964

    Google Scholar 

  • Phillips JB (1986b) Two magnetoreception pathways in a migratory salamander. Science 233: 765–767

    Google Scholar 

  • Phillips JB, Adler K (1978) Directional and discriminatory responses of salamanders to weak magnetic fields. In Schmidt-Koenig K, Keeton W (eds) Animal Migration, Navigation and Homing Springer-Verlag, Berlin 325–333

    Google Scholar 

  • Phillips JB, Borland SC (1992a) Behavioral evidence for use of a light dependent magnetoreception mechanism by a vertebrate. Nature 359: 142–144

    Google Scholar 

  • Phillips JB, Borland SC (1992b) Wavelength specific effects of light on magnetic compass orientation in the eastern red-spotted newt Notophthalmus viridiscens. Ethology, Ecology, Evolution 4: 33–42

    Google Scholar 

  • Phillips JB, Borland SC (1994) Use of a specialized magnetoreception system for homing by the eastern red-spotted newt Notophthalmus viridiscens. Journal of Experimental Biology 188: 275–291

    Google Scholar 

  • Phillips JB, Adler K, Borland SC (1995) True navigation of an amphibian. Animal Behavior 50: 855–858

    Article  Google Scholar 

  • Phillips, JB, Deutschlander ME, Freake MJ, Borland SC (2001) The role of extraocular photoreceptors in newt magnetic compass orientation: parallels between light-dependent magnetoreception and polarized light detection in vertebrates. Journal of Experimental Biology 188: 275–291

    Google Scholar 

  • Pilliod DS, Peterson CR, Ritson PI (2002) Seasonal migration of Columbia spotted frogs (Rana luteiventris) among complementary resources in a high mountain basin. Canadian Journal of Zoology 80: 1849–1862

    Article  Google Scholar 

  • Plotkin PT (2003) Adult migration and habitat use. In Lutz PL, Musick JA, Wyneken J (eds) The Biology of Sea Turtles Volume II. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Plotkin PT, Spotila JR (2002) Post-nesting migrations of loggerhead turtles Caretta caretta from Georgia, USA: conservation implications for a genetically distinct subpopulation. Oryx 36: 396–399

    Article  Google Scholar 

  • Plotkin PT, Byles RA, Rostal DC, Owens DW (1995) Independent versus socially facilitated oceanic migrations of the olive ridley, Lepidochelys olivacea. Marine Biology 122: 137–143

    Article  Google Scholar 

  • Plummer MV, Shirer HW (1975) Movement patterns in a river population of the softshell turtle Trionyx muticus. Occasional Papers of the Museum of Natural History, University of Kansas 43: 1–26

    Google Scholar 

  • Polovina JJ, Balazs GH, Howell EA, Parker DM, Seki MP, Dutton PH (2004) Forage and migration habitat of loggerhead (Caretta caretta) and olive ridley (Lepidochelys olivacea) sea turtles in the central North Pacific Ocean. Fisheries Oceanography 13: 36–51

    Article  Google Scholar 

  • Pough HF, Andrews RM, Cadle JE, Crump ML, Savitzky AH, Wells KD (1998) Herpetology Prentice Hall Inc., New Jersey

    Google Scholar 

  • Pough HF, Janis CM, Heiser JB (2002) Vertebrate Life 6th Ed. Prentice Hall Inc, New Jersey

    Google Scholar 

  • Pritchard PCH (1976) Post-nesting movements of marine turtles (Cheloniidae and Dermochelidae) tagged in the Guyanas. Copeia 1976: 749–752

    Google Scholar 

  • Quinn NWS, Tate DP (1991) Seasonal movements and habitat of wood turtles (Clemmys insculpta) in Algonquin Park, Canada. Journal of Herpetology 25: 217–220

    Google Scholar 

  • Rand AS (1967) Ecology and social organization in the iguanid lizard Anolis lineatopus. Proceedings of the United States National Museum 122: 1–79

    Google Scholar 

  • Rand AS (1968) A nesting aggregation of Iguanas. Copeia 3: 552–561

    Google Scholar 

  • Rebel TP (1974) Sea Turtles and the Turtle Industry of the West Indies, Florida, and the Gulf of Mexico. Revised Edition University of Miami Press, Coral Gables, Florida

    Google Scholar 

  • Reinert HK, Kodrich WR (1982) Movements and habitat utilization by the massassauga, Sistrurus catenatus catenatus. Journal of Herpetology 16: 152–171

    Google Scholar 

  • Renaud ML, Carpenter JA, Williams JA, Landry AMJ (1996) Kemp’s ridley sea turtle (Lepidochelys kempii) tracked by satellite telemetry from Louisiana to nesting beach at Rancho Nuevo, Tamaulipas, Mexico. Chelonian Conservation Biology 2: 108–109

    Google Scholar 

  • Resendiz A, Resendiz B, Nichols WJ, Seminoff JA, Kamezaki N (1998) First confirmed east-west transpacific movement of a loggerhead sea turtle, Caretta caretta, released in Baja California, Mexico. Pacific Science 52: 151–153

    Google Scholar 

  • Rodda GH (1984) The orientation and navigation of juvenile alligators: evidence of magnetic sensitivity. Journal of Comparative Biology 154: 648–658

    Google Scholar 

  • Rodda GH (1985) Navigation in juvenile alligators. Zeitschrift für Tierpsychologie 68: 65–77

    Google Scholar 

  • Rodhouse P, Barling RWA, Clark WIC (1975) The feeding and ranging behaviour of the Galapagos giant tortoises (Geochelone elephantopus): The Cambridge and London University Galapagos Expeditions 1972 and 1973. Journal of Zoology, London 176: 297–310

    Article  Google Scholar 

  • Russell AP, Bauer AM (2000) The Amphibians and Reptiles of Alberta: A Field Guide and Primer of Boreal Herpetology 2nd Ed. University of Calgary Press, Calgary, Alberta, Canada

    Google Scholar 

  • Salmon M (2003) Artificial night lighting and sea turtles. Biologist 50: 163–168

    Google Scholar 

  • Salmon M, Lohmann KJ (1989) Orientation cues used by hatchling loggerhead sea turtles (Caretta caretta L.) during their offshore migration. Ethology 83: 215–228

    Google Scholar 

  • Salmon M, Wyneken J (1990) Do swimming loggerhead sea turtles (Caretta caretta L.) use light cues for offshore orientation? Marine Behaviour and Physiology 17: 233–246

    Google Scholar 

  • Schabetsberger R, Jehle R, Maletzky A, Pesta J, Sztatecsny M (2004) Delineation of terrestrial reserves for amphibians: post-nesting migrations of Italian crested newts (Triturus c carnifex) at high altitude. Biological Conservation 117: 95–104

    Article  Google Scholar 

  • Scoccianti C (2000) Study on road stretches at high risk for the migration of amphibians (focal crossing points) in the Province of Florence: proposals and measures to minimize impact. Rivista di Idrobiologia 38: 323–332

    Google Scholar 

  • Semlitsch RD (1985) Analysis of climatic factors influencing migrations of the salamander Ambystoma talpoideum. Copeia 2: 477–489

    Google Scholar 

  • Semlitsch RD, McMillan MA (1980) Breeding migrations, population size structure and reproduction of the dwarf salamander, Eurycea quadridigitata, in South Carolina. Brimleyana 3: 97–105

    Google Scholar 

  • Semlitsch RD, Pechmann JHK (1985) Diel patterns of migratory activity for several species of pond-breeding salamanders. Copeia 1985: 86–91

    Google Scholar 

  • Sexton OJ, Phillips C, Bramble JE (1990) The effects of temperature in the breeding migration of the spotted salamander (Ambystoma maculatum). Copeia 1990: 781–787

    Google Scholar 

  • Shealy RM (1976) The natural history of the Alabama map turtle, Graptemys pulchra Baur, in Alabama. Bulletin of the Florida State Museum, Biological Sciences 21: 47–111

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thompson, M.D., Russell, A.P. (2005). Glacial Retreat and its Influence on Migration of Mitochondrial Genes in the Long-toed Salamander (Ambystoma macrodactylum) in Western North America. In: Elewa, A.M.T. (eds) Migration of Organisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26604-6_8

Download citation

Publish with us

Policies and ethics