Cannabinoids pp 573-598 | Cite as

Cannabinoids and the Digestive Tract

Part of the Handbook of Experimental Pharmacology book series (HEP, volume 168)


In the digestive tract there is evidence for the presence of high levels of endocannabinoids (anandamide and 2-arachidonoylglycerol) and enzymes involved in the synthesis and metabolism of endocannabinoids. Immunohistochemical studies have shown the presence of CB1 receptors on myenteric and submucosal nerve plexuses along the alimentary tract. Pharmacological studies have shown that activation of CB1 receptors produces relaxation of the lower oesophageal sphincter, inhibition of gastric motility and acid secretion, as well as intestinal motility and secretion. In general, CB1-induced inhibition of intestinal motility and secretion is due to reduced acetylcholine release from enteric nerves. Conversely, endocannabinoids stimulate intestinal primary sensory neurons via the vanilloid VR1 receptor, resulting in enteritis and enhanced motility. The endogenous cannabinoid system has been found to be involved in the physiological control of colonic motility and in some pathophysiological states, including paralytic ileus, intestinal inflammation and cholera toxin-induced diarrhoea. Cannabinoids also possess antiemetic effects mediated by activation of central and peripheral CB1 receptors. Pharmacological modulation of the endogenous cannabinoid system could provide a new therapeutic target for the treatment of a number of gastrointestinal diseases, including nausea and vomiting, gastric ulcers, secretory diarrhoea, paralytic ileus, inflammatory bowel disease, colon cancer and gastro-oesophageal reflux conditions.


Cannabinoid receptors Intestinal motility Intestinal secretion Emesis Intestinal inflammation Feeding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adami M, Frati P, Bertini S, Kulkarni-Narla A, Brown DR, de Caro G, Coruzzi G, Soldani G (2002) Gastric antisecretory role and immunohistochemical localization of cannabinoid receptors in the rat stomach. Br J Pharmacol 135:1598–1606PubMedCrossRefGoogle Scholar
  2. Ahluwalia J, Urban L, Capogna M, Bevan S, Nagy I (2000) Cannabinoid 1 receptors are expressed in nociceptive primary sensory neurons. Neuroscience 100:685–688PubMedCrossRefGoogle Scholar
  3. Akiba Y, Nakamura M, Ishii H (2001) Immunolocalization of vanilloid receptor-1 (VR-1) in CGRP-positive neurons and interstitial cells of Cajal in the myenteric plexus of the rat gastrointestinal tract. Gastroenterology 120:1721Google Scholar
  4. Anavi-Goffer S, Coutts AA (2003) Cellular distribution of vanilloid VR1 receptor immunoreactivity in the guinea-pig myenteric plexus. Eur J Pharmacol 458:61–71PubMedCrossRefGoogle Scholar
  5. Anavi-Goffer S, McKay MG, Ashford MLJ, Coutts AA (2002) Vanilloid receptor type 1-immunoreactivity is expressed by intrinsic afferent neurones in the guinea-pig myenteric plexus. Neurosci Lett 319:53–57PubMedCrossRefGoogle Scholar
  6. Anderson PF, Jackson DM, Chesher GB, Malor R (1975) Tolerance to the effects of delta-9-tetrahydrocannabinol in mice on intestinal motility, temperature and locomotor activity. Psychopharmacologia 43:31–36PubMedCrossRefGoogle Scholar
  7. Bartho L, Benko R, Lazar Z, Illenyi L, Horvath OP (2002) Nitric oxide is involved in the relaxant effect of capsaicin in the human sigmoid colon circular muscle. Naunyn Schmiedebergs Arch Pharmacol 366:496–500PubMedGoogle Scholar
  8. Basilico L, Parolaro D, Colleoni M, Costa B, Giagnoni G (1999) Cross-tolerance and convergent dependence between morphine and cannabimimetic agent WIN 55,212-2 in the guinea-pig ileum myenteric plexus. Eur J Pharmacol 376:265–271PubMedCrossRefGoogle Scholar
  9. Bateman DN (1983) Delta-9-tetrahydrocannabinol and gastric emptying. Br J Clin Pharmacol 15:749–751PubMedGoogle Scholar
  10. Begg M, Dale N, Llaudet E, Molleman A, Parsons ME (2002a) Modulation of the release of endogenous adenosine by cannabinoids in the myenteric preparation of the guinea-pig plexus-longitudinal muscle ileum. Br J Pharmacol 137:1298–1304PubMedCrossRefGoogle Scholar
  11. Begg M, Molleman A, Parsons M (2002b) Modulation of the release of endogenous gamma-aminobutyric acid by cannabinoids in the guinea pig ileum. Eur J Pharmacol 434:87–94PubMedCrossRefGoogle Scholar
  12. Bifulco M, Di Marzo V (2002) Targeting the endocannabinoid system in cancer therapy: a call for further research. Nat Med 8:547–550PubMedCrossRefGoogle Scholar
  13. Brown DR, Poonyachoti S, Osinski MA, Kowalski TR, Pampusch MS, Elde RP, Murtaugh MP (1998) Delta-opioid receptor mRNA expression and immunohistochemical localization in porcine ileum. Dig Dis Sci 43:1402–1410PubMedCrossRefGoogle Scholar
  14. Burdyga G, Lal S, Varro A, Dimaline R, Thompson DG, Dockray GJ (2004) Expression of cannabinoid CB1 receptors by vagal afferent neurons is inhibited by cholecystokinin. J Neurosci 24:2708–2715PubMedCrossRefGoogle Scholar
  15. Calignano A, La Rana G, Makriyannis A, Lin SY, Beltramo M, Piomelli D (1997) Inhibition of intestinal motility by anandamide, an endogenous cannabinoid. Eur J Pharmacol 340:R7–R8PubMedGoogle Scholar
  16. Capasso R, Izzo AA, Fezza F, Pinto A, Capasso F, Mascolo N, Di Marzo V (2001) Inhibitory effect of palmitoylethanolamide on gastrointestinal motility in mice. Br J Pharmacol 134:945–950PubMedCrossRefGoogle Scholar
  17. Casu MA, Porcella A, Ruiu S, Saba P, Marchese G, Carai MA M, Reali R, Gessa GL, Pani L (2003) Differential distribution of functional cannabinoid CB1 receptors in the mouse gastroenteric tract. Eur J Pharmacol 459:97–105PubMedCrossRefGoogle Scholar
  18. Chesher GB, Dahl CJ, Everingham M, Jackson DM, Marchant Williams H, Starmer GA (1973) The effect of cannabinoids on intestinal motility and their antinociceptive effect in mice. Br J Pharmacol 49:588–594PubMedGoogle Scholar
  19. Colombo G, Agabio R, Lobina C, Reali R, Gessa GL (1998) Cannabinoid modulation of intestinal propulsion in mice. Eur J Pharmacol 344:67–69PubMedCrossRefGoogle Scholar
  20. Coruzzi G, Adami M, Coppelli G, Frati P, Soldani G (1999) Inhibitory effect of the cannabinoid receptor agonist WIN 55,212-2 on pentagastrin-induced gastric acid secretion in the anaesthetized rat. Naunyn Schmiedebergs Arch Pharmacol 360:715–718PubMedCrossRefGoogle Scholar
  21. Coutts AA (2004) Cannabinoid receptor activation and the endocannabinoid system in the gastrointestinal tract. Curr Neuropharmacol 2:91–102Google Scholar
  22. Coutts AA, Pertwee RG (1997) Inhibition by cannabinoid receptor agonists of acetylcholine release from the guinea-pig myenteric plexus. Br J Pharmacol 121:1557–1566PubMedGoogle Scholar
  23. Coutts AA, Brewster N, Ingram T, Razdan RK, Pertwee RG (2000) Comparison of novel cannabinoid partial agonists and SR141716A in the guinea-pig small intestine. Br J Pharmacol 129:645–652PubMedCrossRefGoogle Scholar
  24. Coutts AA, Irving AJ, Mackie K, Pertwee RG, Anavi-Goffer S (2002) Localisation of cannabinoid CB1 receptor immunoreactivity in the guinea pig and rat myenteric plexus. J Comp Neurol 448:410–422PubMedCrossRefGoogle Scholar
  25. Croci T, Manara L, Aureggi, Guagnini F, Rinaldi-Carmona M, Maffrand J-P, Le Fur G, Mukenge S, Ferla G (1998) In vitro functional evidence of neuronal cannabinoid CB1 receptors in human ileum. Br J Pharmacol 125:1393–1395PubMedCrossRefGoogle Scholar
  26. Croci T, Landi M, Galzin AM, Marini P (2003) Role of cannabinoid CB1 receptors and tumor necrosis factor-alpha in the gut and systemic anti-inflammatory activity of SR 141716 (Rimonabant) in rodents. Br J Pharmacol 140:115–122PubMedCrossRefGoogle Scholar
  27. Darmani NA (2001a) Delta(9)-tetrahydrocannabinol and synthetic cannabinoids prevent emesis produced by the cannabinoid CB1 receptor antagonist/inverse agonist SR141716A. Neuropsychopharmacology 24:198–203PubMedCrossRefGoogle Scholar
  28. Darmani NA (2001b) The cannabinoid CB1 receptor antagonist SR 141716A reverses the antiemetic and motor depressant actions of WIN 55, 212-2. Eur J Pharmacol 430:49–58PubMedCrossRefGoogle Scholar
  29. Darmani NA (2002) The potent emetogenic effects of the endocannabinoid, 2-AG (2-arachidonoylglycerol) are blocked by delta(9)-tetrahydrocannabinol and other cannabinoids. J Pharmacol Exp Ther 300:34–42PubMedCrossRefGoogle Scholar
  30. Darmani NA, Janoyan JJ, Kumar N, Crim JL (2003a) Behaviorally active doses of the CB1 receptor antagonist SR 141716A increase brain serotonin and dopamine levels and turnover. Pharmacol Biochem Behav 75:777–787PubMedCrossRefGoogle Scholar
  31. Darmani NA, Sim-Selley LJ, Martin BR, Janoyan JJ, Crim JL, Parekh B, Breivogel CS (2003b) Antiemetic and motor-depressive actions of CP55,940: cannabinoid CB1 receptor characterization, distribution, and G-protein activation. Eur J Pharmacol 459:83–95PubMedCrossRefGoogle Scholar
  32. De Petrocellis L, Cascio MG, Di Marzo V (2004) The endocannabinoid system: a general view and latest additions. Br J Pharmacol 141:765–774PubMedCrossRefGoogle Scholar
  33. Dewey WL, Harris LS, Kennedy JS (1972) Some pharmacological and toxicological effects of l-trans-delta-8-and l-trans-delta-9-tetrahydrocannabinol in laboratory rodents. Arch Int Pharmacodyn Ther 196:133–145PubMedGoogle Scholar
  34. Di Carlo G, Izzo AA (2003) Cannabinoids for gastrointestinal diseases: potential therapeutic applications. Expert Opin Investig Drugs 12:39–49PubMedCrossRefGoogle Scholar
  35. Facer P, Knowles CH, Tam PK H, Ford AP, Dyer N, Baecker PA, Anand P (2001) Novel capsaicin (VR1) and purinergic (P2X(3)) receptors in Hirschsprung’s intestine. J Pediatr Surg 36:1679–1684PubMedCrossRefGoogle Scholar
  36. Feher E, Vajda J (1982) Effect of capsaicin on the nerve elements of the small intestine. Acta Morphol Acad Sci Hung 30:57–63PubMedGoogle Scholar
  37. Frederickson RC A, Hewes CR, Aiken JW (1976) Correlation between the in vivo and in vitro expression of opiate withdrawal precipitated by naloxone: their antagonism by l-(-)-delta-9-tetrahydrocannabinol. J Pharmacol Exp Ther 199:375–384PubMedGoogle Scholar
  38. Germanò MP, D’Angelo V, Mondello R, Pergolizzi S, Capasso F, Capasso R, Izzo AA, Mascolo N, De Pasquale R (2001) Cannabinoid CB1-mediated inhibition of stress-induced gastric ulcers in rats. Naunyn Schmiedebergs Arch Pharmacol 363:241–244PubMedGoogle Scholar
  39. Gomez R, Navarro M, Ferrer B, Trigo JM, Bilbao A, Del Arco I, Cippitelli A, Nava F, Piomelli D, Rodriguez de Fonseca F (2002) A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding. J Neurosci 22:9612–9617PubMedGoogle Scholar
  40. Griffin G, Fernando SR, Ross RA, McKay NG, Ashford MLJ, Shire D, Huffman JW, Yu S, Lainton JA H, Pertwee RG (1997) Evidence for the presence of CB2-like cannabinoid receptors on peripheral nerve terminals. Eur J Pharmacol 339:53–61PubMedCrossRefGoogle Scholar
  41. Guanini F, Croci T, Aureggi G, Manara L, Rinaldi-Carmona M, Mukenge S, Aldrighetti L, Ferla G, Maffrand J-P, Le Fur G (2000) Tolerance to (+)WIN55,212-2 inhibitory effect and withdrawal by the cannabinoid CB1 receptor antagonist SR 141716 in isolated strips of small intestine. International Cannabinoid Research Society symposium on the Cannabinoids, Burlington, VermontGoogle Scholar
  42. Hanus L, Abu-Lafi S, Fride E, Breuer A, Vogel Z, Shalev DE, Kustanovich I, Mechoulam R (2001) 2-Arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc Natl Acad Sci USA 98:3662–3665PubMedCrossRefGoogle Scholar
  43. Heinemann A, Shahbazian A, Holzer P (1999) Cannabinoid inhibition of guinea-pig intestinal peristalsis via inhibition of excitatory and activation of inhibitory neural pathways. Neuropharmacology 38:1289–1297PubMedCrossRefGoogle Scholar
  44. Heshmati H, Caplain H, Bellisle F, Mosse M, Fauveau C, Le Fur G (2001) SR141716, a selective CB1 receptor cannabinoid receptor antagonist reduces hunger, caloric intake, and body weight in overweight or obese men. Obes Res 9:70SGoogle Scholar
  45. Hine B, Friedman E, Torrelio M, Gershon S (1975) Morphine-dependent rats: blockade of precipitated abstinence by tetrahydrocannabinol. Science 187:443–445PubMedGoogle Scholar
  46. Holzer P (2001) Gastrointestinal afferents as targets of novel drugs for the treatment of functional bowel disorders and visceral pain. Eur J Pharmacol 429:177–193PubMedCrossRefGoogle Scholar
  47. Holzer P (2003) Acid-sensitive ion channels in gastrointestinal function. Curr Opin Pharmacol 3:618–625PubMedGoogle Scholar
  48. Ihenetu K, Molleman A, Parsons ME, Whelan CJ (2003) Inhibition of interleukin-8 release in the human colonic epithelial cell line HT-29 by cannabinoids. Eur J Pharmacol 458:207–215PubMedCrossRefGoogle Scholar
  49. Izzo AA, Mascolo N, Borrelli F, Capasso F (1998) Excitatory transmission to the circular muscle of the guinea-pig ileum: evidence for the involvement of cannabinoid CB1 receptors. Br J Pharmacol 124:1363–1368PubMedGoogle Scholar
  50. Izzo AA, Mascolo N, Capasso R, Germano MP, DePasquale R, Capasso F (1999a) Inhibitory effect of cannabinoid agonists on gastric emptying in the rat. Naunyn Schmiedebergs Arch Pharmacol 360:221–223PubMedCrossRefGoogle Scholar
  51. Izzo AA, Mascolo N, Borrelli F, Capasso F (1999b) Defaecation, intestinal fluid accumulation and motility in rodents: implications of cannabinoid CB1 receptors. Naunyn Schmiedebergs Arch Pharmacol 359:65–70PubMedGoogle Scholar
  52. Izzo AA, Mascolo N, Tonini M, Capasso F (2000) Modulation of peristalsis by cannabinoid CB1 ligands in the isolated guinea-pig ileum. Br J Pharmacol 129:984–990PubMedGoogle Scholar
  53. Izzo AA, Pinto L, Borrelli F, Capasso R, Mascolo N, Capasso F (2000b) Central and peripheral cannabinoid modulation of gastrointestinal transit in physiological states or during the diarrhoea induced by croton oil. Br J Pharmacol 129:1627–1632PubMedGoogle Scholar
  54. Izzo AA, Capasso R, Pinto L, Di Carlo G, Mascolo N, Capasso F (2001a) Effect of vanilloid drugs on gastrointestinal transit in mice. Br J Pharmacol 132:1411–1416PubMedCrossRefGoogle Scholar
  55. Izzo AA, Fezza F, Capasso R, Bisogno T, Pinto L, Iuvone T, Esposito G, Mascolo N, Di Marzo V, Capasso F (2001b) Cannabinoid CB1-receptor mediated regulation of gastrointestinal motility in mice in a model of intestinal inflammation. Br J Pharmacol 134:563–570PubMedCrossRefGoogle Scholar
  56. Izzo AA, Mascolo N, Capasso F (2001c) The gastrointestinal pharmacology of cannabinoids. Curr Opin Pharmacol 1:597–603PubMedGoogle Scholar
  57. Izzo AA, Capasso F, Costagliola A, Bisogno T, Marsicano G, Ligresti A, Matias I, Capasso R, Pinto L, Borrelli F, Cecio A, Lutz B, Mascolo N, Di Marzo V (2003) An endogenous cannabinoid tone attenuates cholera toxin-induced fluid accumulation in mice. Gastroenterology 125:765–774PubMedCrossRefGoogle Scholar
  58. Joseph J, Niggemann B, Zaenker KS, Entschladen F (2004) Anandamide is an endogenous inhibitor for the migration of tumor cells and T lymphocytes. Cancer Immunol Immunother 53:723–728PubMedCrossRefGoogle Scholar
  59. Katayama K, Ueda N, Kurahashi Y, Suzuki H, Yamamoto S, Kato I (1997) Distribution of anandamide amidohydrolase in rat tissues with special reference to small intestine. Biochim Biophys Acta 1347:212–218PubMedGoogle Scholar
  60. Kojima S, Sugiura T, Waku K K, Kamikawa Y (2002) Contractile response to a cannabimimetic eicosanoid, 2-arachidonoylglycerol, of longitudinal smoothmuscle from the guinea-pig distal colon in vitro. Eur J Pharmacol 444:203–207PubMedCrossRefGoogle Scholar
  61. Krowicki ZK, Moerschbaecher JM, Winsauer PJ, Digavalli SV, Hornby PJ (1999) Delta9-tetrahydrocannabinol inhibits gastric motility in the rat through cannabinoid CB1 receptors. Eur J Pharmacol 371:187–196PubMedCrossRefGoogle Scholar
  62. Kulkarni-Narla A, Brown DR (2000) Localization of CB1-cannabinoid receptor immunoreactivity in the porcine enteric nervous system. Cell Tissue Res 302:73–80PubMedCrossRefGoogle Scholar
  63. Kulkarni-Narla A, Brown DR (2001) Opioid, cannabinoid and vanilloid receptor localization on porcine cultured myenteric neurons. Neurosci Lett 308:153–156PubMedCrossRefGoogle Scholar
  64. Kwiatkowska M, Parker LA, Burton P, Mechoulam R (2004) A comparative analysis of the potential of cannabinoids and ondansetron to supress cisplatin-induced emesis in the Suncus murinus (house musk shrew). Psychopharmacology (Berl). 174:254–259PubMedCrossRefGoogle Scholar
  65. Lambert DM, Vandevoorde S, Jonsson KO, Fowler CJ (2002) The palmitoylethanolamide family: A new class of anti-inflammatory agents? Curr Med Chem 9:663–674PubMedGoogle Scholar
  66. Landi M, Croci T, Rinaldi-Carmona M, Maffrand JP, Le Fur G, Manara L (2002) Modulation of gastric emptying and gastrointestinal transit in rats through intestinal cannabinoid CB1 receptors. Eur J Pharmacol 450:77–83PubMedCrossRefGoogle Scholar
  67. Lee MC, Smith FL, Stevens DL, Welch SP (2003) The role of several kinases in mice tolerant to Delta(9)-tetrahydrocannabinol. J Pharmacol Exp Ther 305:593–599PubMedGoogle Scholar
  68. Lehmann A, Blackshaw LA, Branden L, Carlsson A, Jensen J, Nygren E, Smid SD (2002) Cannabinoid receptor agonism inhibits transient lower esophageal sph incter relaxations and reflux in dogs. Gastroenterology 123:1129–1134PubMedCrossRefGoogle Scholar
  69. Ligresti A, Bisogno T, Matias I, De Petrocellis L, Cascio MG, Cosenza V, D’Argenio G, Scaglione G, Bifulco M, Sorrentini I, Di Marzo V (2003) Possible endocannabinoid control of colorectal cancer growth. Gastroenterology 125:677–687PubMedCrossRefGoogle Scholar
  70. López-Redondo F, Lees GM, Pertwee RG (1997) Effects of cannabinoid receptor ligands on electrophysiological properties of myenteric neurones of the guinea-pig ileum. Br J Pharmacol 122:330–334PubMedGoogle Scholar
  71. Lundgren O (2002) Enteric nerves and diarrhoea. Pharmacol Toxicol 90:109–120PubMedCrossRefGoogle Scholar
  72. Lynn AB, Herkenham M (1994) Localization of cannabinoid receptors and nonsaturable high-density cannabinoid binding sites in peripheral tissues of the rat: implications for receptor-mediated immune modulation by cannabinoids. J Pharmacol Exp Ther 268:1612–1623PubMedGoogle Scholar
  73. MacNaughton WK, Cushing K, Van Sickle MD, Keenan CM, Mackie K, Sharkey KA (2003) Cannabinoid CB1 receptor distribution and function in neurally mediated chloride secretion in the guinea pig ileum. Gastroenterology 124:A342Google Scholar
  74. MacNaughton WK, Van Sickle MD, Keenan CM, Cushing K, Mackie K, Sharkey KA (2004) Distribution and function of the cannabinoid-1 receptor in the modulation of ion transport in the guinea pig ileum: relationship to capsaicin-sensitive nerves. Am J Physiol Gastrointest Liver Physiol (in press)Google Scholar
  75. Manara L, Croci T, Guagnini F, Rinaldi-Carmona M, Maffrand JP, Le Fur G, Mukenge S, Ferla G (2002) Functional assessment of neuronal cannabinoid receptors in the muscular layers of human ileum and colon. Dig Liver Dis 34:262–269PubMedCrossRefGoogle Scholar
  76. Mancinelli R, Fabrizi A, Del Monaco S, Azzena GB, Vargiu R, Colombo GC, Gessa GL (2001) Inhibition of peristaltic activity by cannabinoids in the isolated distal colon of mouse. Life Sci 69:101–111PubMedCrossRefGoogle Scholar
  77. Mang CF, Erbelding D, Kilbinger H (2001) Differential effects of anandamide on acetylcholine release in the guinea-pig ileum mediated via vanilloid and non-CB1 cannabinoid receptors. Br J Pharmacol 134:161–167PubMedCrossRefGoogle Scholar
  78. Mascolo N, Izzo AA, Ligresti A, Costagliola A, Pinto L, Cascio MG, Maffia P, Cecio A, Capasso F, Di Marzo V (2002) The endocannabinoid system and the molecular basis of paralytic ileus in mice. Faseb J 16:1973–1975PubMedGoogle Scholar
  79. Massa F, Marsicano G, Hermann H, Cannich A, Krisztina M, Cravatt BF, Ferri G-L, Sibaev A, Lutz B (2004) The endogenous cannabinoid system protects against colonic inflammation. J Clin Invest 113:1202–1209PubMedCrossRefGoogle Scholar
  80. McCallum RW, Soykan I, Sridhar KR, Ricci DA, Lange RC, Plankey MW (1999) Delta-9-tetrahydrocannabinol delays the gastric emptying of solid food in humans: a double-blind, randomized study. Aliment Pharmacol Ther 13:77–80PubMedCrossRefGoogle Scholar
  81. McVey DC, Schmid PC, Schmid HH O, Vigna SR (2003) Endocannabinoids induce ileitis in rats via the capsaicin receptor (VR1). J Pharmacol Exp Ther 304:713–722PubMedCrossRefGoogle Scholar
  82. Morrone LA, Romanelli L, Mazzanti G, Valeri P, Menichin F (1993) Hashish antagonism on the in vitro development of withdrawal contracture. Pharmacol Res 27(Suppl 1):63–64Google Scholar
  83. Nye JS, Seltzman HH, Pitt CG, Snyder SH (1985) High affinity cannabinoid binding sites in brain membranes labeled with [H-3]-5-trimethylammonium delta-8-tetra-hydrocannabinol. J Pharmacol Exp Ther 234:784–791PubMedGoogle Scholar
  84. Oleinik VM (1995) Distribution of digestive enzyme activities along intestine in blue fox mink, ferret and rat. Comp Biochem Physiol A Physiol 112:55–58PubMedGoogle Scholar
  85. Parker LA, Mechoulam R (2003) Cannabinoid agonists and antagonists modulate lithium-induced conditioned gaping in rats. Integr Physiol Behav Sci 38:134–146Google Scholar
  86. Parker LA, Mechoulam R, Schlievert C (2002) Cannabidiol, a non-psychoactive component of cannabis and its synthetic dimethylheptyl homolog suppress nausea in an experimental model with rats. Neuroreport 13:567–570PubMedGoogle Scholar
  87. Parker LA, Mechoulam R, Schlievert C, Abbott L, Fudge ML, Burton P (2003) Effects of cannabinoids on lithium-induced conditioned rejection reactions in a rat model of nausea. Psychopharmacology (Berl) 166:156–162PubMedGoogle Scholar
  88. Partosoedarso ER, Abrahams TP, Scullion RT, Moerschbaecher JM, Hornby PJ (2003) Cannabinoid1 receptor in the dorsal vagal complex modulates lower oesophageal sphincter relaxation in ferrets. J Physiol 550:149–158PubMedCrossRefGoogle Scholar
  89. Paton WDM, Zar MA (1968) The origin of acetylcholine released from guinea-pig intestine and longitudinal muscle strips. J Physiol (Lond) 194:13–33PubMedGoogle Scholar
  90. Pertwee RG (1997) Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther 74:129–180PubMedCrossRefGoogle Scholar
  91. Pertwee RG (2001) Cannabinoids and the gastrointestinal tract. Gut 48:859–867PubMedCrossRefGoogle Scholar
  92. Pertwee RG, Ross RA (2002) Cannabinoid receptors and their ligands.Prostaglandins Leukot Essent Fatty Acids 66:101–121PubMedCrossRefGoogle Scholar
  93. Pertwee RG, Stevenson LA, Elrick DB, Mechoulam R, Corbett AD (1992) Inhibitory effects of certain enantiomeric cannabinoids in the mouse vas deferens and themyenteric plexus preparation of guinea-pig small intestine. Br J Pharmacol 105:980–984PubMedGoogle Scholar
  94. Pertwee RG, Fernando SR, Griffin G, Abadji V, Makriyannis A (1995) Effect of phenylmethyl-sulphonyl fluoride on the potency of anandamide as an inhibitor of electrically evoked contractions in two isolated tissue preparations. Eur J Pharmacol 272:73–78PubMedGoogle Scholar
  95. Pertwee RG, Fernando SR, Nash JE, Coutts AA (1996) Further evidence for the presence of cannabinoid CB1 receptors in guinea-pig small intestine. Br J Pharmacol 118:2199–2205PubMedGoogle Scholar
  96. Pertwee RG, Fernando S, Ritchie JEA (1998) Preliminary validation of a novel experimental model for the study of cannabinoid tolerance. International Cannabinoid Research Society symposium on the Cannabinoids, Burlington, VermontGoogle Scholar
  97. Pinto L, Capasso R, Di Carlo G, Izzo AA (2002a) Endocannabinoids and the gut. Prostaglandins Leukot Essent Fatty Acids 66:333–341PubMedCrossRefGoogle Scholar
  98. Pinto L, Izzo AA, Cascio MG, Bisogno T, Hospodar-Scott K, Brown DR, Mascolo N, Di Marzo VCapasso F (2002b) Endocannabinoids as physiological regulators of colonic propulsion in mice. Gastroenterology 123:227–234PubMedCrossRefGoogle Scholar
  99. Poonyachoti S, Kulkarni-Narla A, Brown DR (2002) Chemical coding of neurons expressing delta-and kappa-opioid receptor and type I vanilloid receptor immunoreactivities in the porcine ileum. Cell Tissue Res 307:23–33PubMedCrossRefGoogle Scholar
  100. Rosell S, Agurell S (1975) Effects of 7-hydroxy-D6-tetrahydrocannabinol and some related cannabinoids on the guinea-pig isolated ileum. Acta Physiol Scand 94:142–144PubMedCrossRefGoogle Scholar
  101. Rosell S, Agurell S, Martin BR (1976) Effects of cannabinoids on isolated smooth muscle preparations. New York, Springer-VerlagGoogle Scholar
  102. Ross RA, Brockie HC, Fernando SR, Saha B, Razdan RK, Pertwee RG (1998) Comparison of cannabinoid binding sites in guinea-pig forebrain and small intestine. Br J Pharmacol 125:1345–1351PubMedCrossRefGoogle Scholar
  103. Rumessen JJ, d’Exaerde AD, Mignon S, Bernex F, Timmermans JP, Schiffmann SN, Panthier JJ, Vanderwinden JM (2001) Interstitial cells of Cajal in the striated musculature of the mouse esophagus. Cell Tissue Res 306:1–14PubMedCrossRefGoogle Scholar
  104. Shire D, Carillon C, Kaghad M, Calandra B, Rinaldi-Carmona M, Le Fur G, Caput D, Ferrara P (1995) An amino-terminal variant of the central cannabinoid receptor resulting from alternative splicing. J Biol Chem 270:3726–3731PubMedGoogle Scholar
  105. Shook JE, Burks TF (1989) Psychoactive cannabinoids reduce gastrointestinal propulsion and motility in rodents. J Pharmacol Exp Ther 249:444–449PubMedGoogle Scholar
  106. Simoneau II, Hamza MS, Mata HP, Siegel EM, Vanderah, TW, Porreca F, Makriyannis A, Malan TP (2001) The cannabinoid agonist WIN55,212-2 suppresses opioid-induced emesis in ferrets. Anesthesiology 94:882–887PubMedGoogle Scholar
  107. Sofia RD, Diamantis W, Harrison JE, Melton J (1978) Evaluation of antiulcer activity of delta-9-tetrahydrocannabinol in the Shay rat test. Pharmacology 17:173–177PubMedGoogle Scholar
  108. Storr M, Gaffal E, Saur D, Schusdziarra V, Allescher HD (2002) Effect of cannabinoids on neural transmission in rat gastric fundus. Can J Physiol Pharmacol 80:67–76PubMedGoogle Scholar
  109. Storr M, Sibaev A, Marsicano G, Lutz B, Schusdziarra V, Timmermans JP Allescher HD (2004) Cannabinoid receptor type 1 modulates excitatory and inhibitory neurotransmission in mouse colon. Am J Physiol Gastrointest Liver Physiol 286:G110–G117PubMedGoogle Scholar
  110. Sugiura T, Kobayashi Y, Oka S, Waku K (2002) Biosynthesis and degradation of anandamide and2-arachidonoylglycerol andtheirpossiblephysiological significance. Prostaglandins Leukot Essent Fatty Acids 66:173–192PubMedCrossRefGoogle Scholar
  111. Todorov S, Pozzoli C, Zamfirova R, Poli E (2003) Prejunctional modulation of non-adrenergic non-cholinergic (NANC) inhibitory responses in the isolated guinea-pig gastric fundus. Neurogastroenterol Motil 15:299–306PubMedCrossRefGoogle Scholar
  112. Tominaga M, Wada M, Masu M (2001) Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc Natl Acad Sci U S A 98:6951–6956PubMedCrossRefGoogle Scholar
  113. Tramer MR, Carroll D, Campbell FA, Reynolds DJM, Moore RA, McQuay HJ (2001) Cannabinoids for control of chemotherapy induced nausea and vomiting: quantitative systematic review. Br Med J 323:16–21Google Scholar
  114. Tyler K, Hillard CJ, Greenwood-Van Meerveld B (2000) Inhibition of small intestinal secretion by cannabinoids is CB1 receptor-mediated in rats. Eur J Pharmacol 409:207–211PubMedCrossRefGoogle Scholar
  115. Ueda N, Yamamoto S (2000) Anandamide amidohydrolase (fatty acid amide hydrolase). Prostaglandins Other Lipid Mediat 61:19–28PubMedGoogle Scholar
  116. Van Sickle MD, Oland LD, Ho, W, Hillard CJ, Mackie K, Davison JS, Sharkey KA (2001) Cannabinoids inhibit emesis through CB1 receptors in the brainstem of the ferret. Gastroenterology 121:767–774PubMedGoogle Scholar
  117. Van Sickle MD, Oland LD, Mackie K, Davison JS, Sharkey KA (2003) Delta-9–tetrahydrocannabinol selectively acts on cannabinoid 1(CB1) receptors in specific regions of the dorsal vagal complex to inhibit emesis in the ferret. Am J Physiol Gastrointest Liver Physiol 285:G566–G576PubMedGoogle Scholar
  118. Vigano D, Cascio MG, Rubino T, Fezza F, Vaccani A, Di Marzo V, Parolaro D (2003) Chronic morphine modulates the contents of the endocannabinoid, 2-arachidonoyl glycerol, in rat brain. Neuropsychopharmacology 28:1160–1167PubMedGoogle Scholar
  119. Yiangou Y, Facer P, Dyer NHC, Chan CL H, Knowles C, Williams NS, Anand P (2001) Vanilloid receptor 1 immunoreactivity in inflamed human bowel. Lancet 357:1338–1339PubMedCrossRefGoogle Scholar
  120. Zygmunt PM, Petersson J, Andersson DA, Chuang HH, Sorgard M, Di Marzo V, Julius D, Hogestatt ED (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452–457PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Experimental PharmacologyUniversity of Naples Federico IINaplesItaly
  2. 2.School of Medical Sciences, College of Life Sciences and MedicineUniversity of Aberdeen, Institute of Medical SciencesAberdeenUK

Personalised recommendations