Bayesian Kriging with lognormal data and uncertain variogram parameters

  • J. Pilz
  • P. Pluch
  • G. Spöck
Conference paper


Covariance Function Posterior Density Variogram Model Prior Density Predictive Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berger JO, De Oliveira V, Sansó B (2001) Objective Bayesian Analysis of Spatially Correlated Data. Amer J (ed.), Statist. Assoc. 96, 1361–1374Google Scholar
  2. Christensen R (1991) Linear Models for Multivariate, Time Series, and Spatial Data. Springer, New YorkGoogle Scholar
  3. Cressie N (1993) Statistics for Spatial Data. 2nd rev. ed., Wiley, New YorkGoogle Scholar
  4. Cui H, Stein A, Myers DE (1995) Extension of information, Bayesian kriging and updating of prior variogram parameters. Environmetrics 6, 373–384Google Scholar
  5. De Oliveira V, Kedem B, Short DA (1997) Bayesian prediction of transformed Gaussian random fields. Amer J (ed.), Statist. Assoc. 92, 1422–1433Google Scholar
  6. Diggle PJ, Tawn JA, Moyeed RA (1998) Model-based geostatistics (with discussion). Appl. Statist. 47, 299–350Google Scholar
  7. Dubois G, Wood R, Pilz J, Gebhardt A (2000) VSS software: combining GIS and geostatistics for the validation and the mapping of radioactivity measurements. In: CIVERT — Final Report (M. deCort, ed.), BrusselsGoogle Scholar
  8. Gaudard M, Karson M, Sinha ELD (1999) Bayesian spatial prediction. Environmental and Ecological Statistics 6, 147–171CrossRefGoogle Scholar
  9. Gebhardt A (2005) Bayesian Methods in Geostatistics: Using prior knowledge about trend. To appear in: Proc. useR Conference 2004Google Scholar
  10. Handcock MS, Wallis JR (1994) An approach to statistical spatial-temporal modelling of meteorological fields (with discussion). Amer J, Statist. Assoc. 89, 368–390Google Scholar
  11. Mardia KV, Marshall RJ (1984) Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika 71, 135–146Google Scholar
  12. Matérn B (1986) Spatial Variation. 2nd Ed., Springer, BerlinGoogle Scholar
  13. Pilz J (1994) Robust Bayes linear prediction of regionalized variables. In: Geostatistics for the Next century, Dimitrakopoulos R (ed.), Kluwer, Dordrecht, 464–475Google Scholar
  14. Pilz J, Schimek MG, Spöck G (1997) Taking account of uncertainty in spatial covariance estimation. In: Geostatistics Wollongong, Baafi E and Schofield N (eds.), Vol. I, Kluwer, Dordrecht, 402–413Google Scholar
  15. Qian SS (1997) Estimating the aerea affected by phosphorus runoff in an Everglades wetland: a comparison of universal kriging and Bayesian kriging. Environmental and Ecological Statistics 4, 1–29CrossRefGoogle Scholar
  16. Stein, ML (1999) Interpolation of Spatial Data. Some Theory for Kriging. Springer, BerlinGoogle Scholar
  17. Zimmermann DL (1989) Computationally efficient restricted maximum likelihood estimation of generalized covariance functions. Math. Geol. 21, 655–672Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • J. Pilz
    • 1
  • P. Pluch
    • 1
  • G. Spöck
    • 1
  1. 1.University of KlagenfurtAustria

Personalised recommendations