Advertisement

Microrheology

  • M.L. Gardel
  • M.T. Valentine
  • D.A. Weitz

Keywords

Mean Square Displacement Optical Tweezer Physical Review Letter Video Microscopy Complex Shear Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A-Hassan E, Heinz WF, Antonik MD, D’Costa NP, Nageswaran S (1998) Relative microelastic mapping of living cells by atomic force microscopy. Biophysical Journal 74:1564–1578Google Scholar
  2. Amblard F, Maggs AC, Yurke B, Pargellis AN, Leibler S (1996) Subdiffusion and anomalous local viscoelasticity in actin networks. Physical Review Letters 77:4470–4473CrossRefGoogle Scholar
  3. Amblard F, Yurke B, Pargellis A, Leibler S (1996) A magnetic manipulator for studying local rheology and micromechanical properties of biological systems. Review of Scientific Instruments 67:818–827CrossRefGoogle Scholar
  4. Ashkin A (1992) Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophysical Journal 61:569–582Google Scholar
  5. Ashkin A (1997) Optical trapping and manipulation of neutral particles using lasers. Proceedings of the National Academy of Sciences of the United States of America 94:4853–4860CrossRefGoogle Scholar
  6. Ashkin A (1998) Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Methods in Cell Biology 55:1–27Google Scholar
  7. Bausch AR, Hellerer U, Essler M, Aepfelbacher M, Sackmann E (2001) Rapid stiffening of integrin receptor-actin linkages in endothelial cells stimulated with thrombin: A magnetic bead microrheometry study. Biophysical Journal 80:2649–2657Google Scholar
  8. Bausch AR, Möller W, Sackmann E (1999) Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophysical Journal 76:573–579Google Scholar
  9. Bausch AR, Ziemann F, Boulbitch AA, Jacobson K, Sackmann E (1998) Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophysical Journal 75:2038–2049Google Scholar
  10. Berne BJ, Pecora R (2000) Dynamic Light Scattering with applications to chemistry, biology, and physics. Dover, MineolaGoogle Scholar
  11. Binning G, Quate CF, Gerber C (1986) Atomic Force Microscope. Physical Review Letters 56:930–933Google Scholar
  12. Block SM (1992) Making light work with optical tweezers. Nature 360:493–495CrossRefGoogle Scholar
  13. Bottomley LA, Coury JE, First PN (1996) Scanning probe microscopy. Biophysical Journal 74:1564–1578Google Scholar
  14. Butt H-J, Jaschke M (1995) Thermal noise in atomic force microscopy. Nanotechnology 6:1–7CrossRefGoogle Scholar
  15. Crick F, Hughes A (1950) The physical properties of the cytoplasm. Experimental Cell Research 1:37–80Google Scholar
  16. Crocker JC, Grier DG (1996) Methods of digital video microscopy. Journal of Colloid and Interface Science 179:298–310CrossRefGoogle Scholar
  17. Crocker JC, Valentine MT, Weeks ER, Gisler T, Kaplan PD, Yodh AG, Weitz DA (2000) Two-point microrheology of inhomogeneous soft materials. Physical Review Letters 85:888–891CrossRefGoogle Scholar
  18. Dasgupta BR, Tee S-Y, Crocker JC, Frisken BJ, Weitz DA (2001) Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering. Physical Review E 65:051505Google Scholar
  19. Dinsmore AD, Weeks ER, Prasad V, Levitt AC, Weitz DA (2001) Three-dimensional confocal microscopy of colloids. Applied Optics 40:4152–4159Google Scholar
  20. Domke J, Radmacher M (1998) Measuring the elastic properties of thin polymer films with the AFM. Langmuir 14:3320–3325CrossRefGoogle Scholar
  21. Drake B, Prater CB, Weisenhorn AL, Gould SAC, Albrecht TR, Quate CF, Channell DS, Hansma HG, Hansma PK (1989) Imaging crystals, polymers, and biological processes in water with AFM. Science 243:1586–1589Google Scholar
  22. Dvorak JA, Nagao E (1998) Kinetic analysis of the mitotic cycle of living vertebrate cells by atomic force microscopy. Experimental Cell Research 242:69–74CrossRefGoogle Scholar
  23. Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ (2001) Scaling the microrheology of living cells. Physical Review Letters 87:148102(4)CrossRefGoogle Scholar
  24. Fällman E, Axner O (1997) Design for fully steerable dual-trap optical tweezers. Applied Optics 36:2107–2113Google Scholar
  25. Feneberg W, Westphal M, Sackmann E (2001) Dictyostelium cells’ cytoplasm as an active viscoplastic body. European Biophysical Journal 30:284–294Google Scholar
  26. Ferry J (1980) Viscoelastic properties of polymers. Wiley, New YorkGoogle Scholar
  27. Ford NC (1985) Light Scattering Apparatus. In: Pecora R (ed) Dynamic light scattering: Applications of photon correlation spectroscopy. Plenum, London pp. 7–58Google Scholar
  28. Freundlich H, Seifriz W (1922) Ueber die elastizität von solen und gelen. Zeitschrift fur physikalische chemie 104:233Google Scholar
  29. Gisler T, Weitz DA (1998) Tracer microrheology in complex fluids. Current Opinion in Colloid and Interface Science 3:586–592CrossRefGoogle Scholar
  30. Gisler T, Weitz DA (1999) Scaling of the microrheology of semidilute F-actin solutions. Physical Review Letters 82:1606–1609Google Scholar
  31. Gisler T, Ruger H, Egelhaaf SU, Tschumi J, Schurtenberger P, Ricka J (1995) Modeselective dynamic light scattering: theory versus experimental realization. Applied Optics 34:3546–3553Google Scholar
  32. Gittes F, Schnurr B, Olmsted PD, MacKintosh FC, Schmidt CF (1997) Microscopic viscoelasticity: shear moduli of soft materials determined from thermal fluctuations. Physical Review Letters 79:3286–3289CrossRefGoogle Scholar
  33. Gittings MR, Cipelletti L, Trappe V, Weitz DA, In M, Marques C (2000) Structure of guar in solutions of H20 and D20: An ultra-small-angle light scattering study. Journal of Physical Chemistry B 104:4381–4386CrossRefGoogle Scholar
  34. Goldman WH, Ezzell RM (1996) Viscoelasticity in wild-type and vinculin-deficient mouse F9 embryonic carcinoma cells examined by atomic force microscopy. Experimental Cell Research 226:234–237Google Scholar
  35. Heilbronn A (1922) Eine neue methode zur bestimmung der viskosität lebender protoplasten. Jahrbuch der Wissenschaftlichen Botanik 61:284–338Google Scholar
  36. Henderson E, Haydon PG, Sakaguchi DS (1992) Actin filament dynamics in living glial cells imaged by atomic force microcopy. Science 257:1944–1946Google Scholar
  37. Hénon S, Lenormand G, Richert A, Gallet F (1999) A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophysical Journal 76:1145–1151Google Scholar
  38. Hertz H (1881) Über die berührung fester elastischer körper. J. Reine Agnew. Mathematik 92:156–171Google Scholar
  39. Hiramoto Y (1969) Mechanical properties of the protoplasm of the sea urchin egg. Experimental Cell Research 56:201–218Google Scholar
  40. Hoh JH, Schoenenberger CA (1994) Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. Journal of Cell Science 107:1105–1114Google Scholar
  41. Hough LA, Ou-Yang HD (1999) A new probe for mechanical testing of nanostructures in soft materials. Journal of Nanoparticle Research 1:495–499CrossRefGoogle Scholar
  42. Johnson CS, Gabriel DA (1995) Laser Light Scattering. Dover, New York.Google Scholar
  43. Joosten JGH, Gelade ETF, Pusey PN (1990) Dynamic light scattering by non-ergodic media: Brownian particles trapped in polyacrylamide gels Physical Review A 42:2161–2175Google Scholar
  44. Kao HP, Verkman AS (1994) Tracking of single fluorescent particles in three dimensions: the use of cylindrical optics to encode particle position. Biophysical Journal 67:1291–1300Google Scholar
  45. Kasas S, Thomson NH, Smith BL, Hansma PK, Mikossy J, Hansma HG (1997) Biological applications of the AFM: from single molecules to organs. International Journal of Imaging Systems and Technology 8:151–161CrossRefGoogle Scholar
  46. Keller M, Schilling J, Sackmann E (2001) Oscillatory magnetic bead rheometer for complex fluid microrheometry. Review of Scientific Instruments 72:3626–3624CrossRefGoogle Scholar
  47. King M, Macklem PT (1977) Rheological properties of microliter quantities of normal mucus. Journal of Applied Physiology 42:797–802Google Scholar
  48. Landau LD, Lifshitz EM (1986) Theory of Elasticity. Pergamon Press, OxfordGoogle Scholar
  49. Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New YorkGoogle Scholar
  50. Levine AJ, Lubensky TC (2000) One-and two-particle microrhelogy. Physical Review Letters 85:1774–1777CrossRefGoogle Scholar
  51. Macosko CW (1994) Rheology: principles, measurements, and applications. VCH, New YorkGoogle Scholar
  52. Mahaffy RE, Shih CK, MacKintosh FC, Käs J (2000) Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Physical Review Letters 85:880–883CrossRefGoogle Scholar
  53. Mason TG (2000) Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation. Rheologica Acta 39: 371–378CrossRefGoogle Scholar
  54. Mason TG, Ganesan K, Van Zanten JH, Wirtz D, Kuo SC (1997) Particle tracking microrheology of complex fluids. Physical Review Letters 79:3282–3285CrossRefGoogle Scholar
  55. Mason TG, Gang H, Weitz DA (1996) Rheology of complex fluids measured by dynamic light scattering. Journal of Molecular Structure 383:81–90CrossRefGoogle Scholar
  56. Mason TG, Gang H, Weitz DA (1997) Diffusing-wave spectroscopy measurements of viscoelasticity of complex fluids. Journal of the Optical Society of America 14:139–149Google Scholar
  57. Mason TG, Gisler T, Kroy K, Frey E, Weitz DA (2000) Rheology of F-actin solutions determined from thermally driven tracer motion. Journal of Rheology 44:917–928Google Scholar
  58. Mason TG, Weitz DA (1995) Optical measurements of the frequency-dependent linear viscoelastic moduli of complex fluids. Physical Review Letters 74:1250–1253CrossRefGoogle Scholar
  59. McGrath JL, Hartwig JH, Kuo SC (2000) The mechanics of F-actin microenvironments depend on the chemistry of probing surfaces. Biophysical Journal 79:3258–3266Google Scholar
  60. Mio C, Gong T, Terray A, Marr DWM (2000) Design of a scanning laser optical trap for multiparticle manipulation. Review of Scientific Instruments 71:2196–2200CrossRefGoogle Scholar
  61. Mio C, Marr DWM (2000) Optical Trapping for the Manipulation of Colloidal Particles. Advanced Materials 12:917–920CrossRefGoogle Scholar
  62. Nemoto S, Togo H (1998) Axial force acting on a dielectric sphere in a focused laser beam. Applied Optics 37:6386–6394CrossRefGoogle Scholar
  63. Neto PAM, Nussenzveig HM (2000) Theory of optical tweezers. Europhysics Letters 50:702–708Google Scholar
  64. Ou-Yang HD, (1999) Design and applications of oscillating optical tweezers for direct measurements of colloidal forces. In: Farinato RS and Dubin PL (eds) Colloid-Polymer Interactions: From Fundamentals to Practice. Wiley, New York, pp 385–405Google Scholar
  65. Ovryn B (2000) Three-dimensional forward scattering particle image velocimetry applied to a microscopic field of view. Experiments in Fluids 29:S175–S184CrossRefGoogle Scholar
  66. Ovryn B, Izen SH (2000) Imaging of transparent spheres through a planar interface using a high numerical-aperture optical microscope. Journal of the Optical Society of America, A 17:1202–1213Google Scholar
  67. Palmer A, Mason TG, Xu J, Kuo SC, Wirtz D (1999) Diffusing wave spectroscopy microrheology of actin filament networks. Biophysical Journal 76:1063–1071Google Scholar
  68. Pine DJ, Weitz DA, Chaikin PM, Herbolzheimer E (1988) Diffusing Wave Spectroscopy. Physical Review Letters 60:1134–1137CrossRefGoogle Scholar
  69. Pusey PN, van Megen W (1989) Dynamic Light Scattering by non-ergodic media. Physica A 157:705–741CrossRefGoogle Scholar
  70. Putman CA, Werf KOVD, Grooth BGD, Hulst NFV, Greve J (1994) Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy. Biophysical Journal 67:1749–1753Google Scholar
  71. Radmacher M, Cleveland JP, Fritz M, Hansma HG, Hansma PK (1994) Mapping interaction forces with the atomic force microscope. Biophysical Journal 66:2159–2165Google Scholar
  72. Radmacher M, Fritz M, Hansma PK (1995) Imaging soft samples with the atomic force microscope: gelatin in water and propanol. Biophysical Journal 69:264–270Google Scholar
  73. Radmacher M, Fritz M, Kasher CM, Cleveland JP, Hansma PK (1996) Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophysical Journal 70:556–567Google Scholar
  74. Radmacher M, Tillmann RW, Fritz M, Gaub HE (1992) From molecules to cells-imaging soft samples with AFM. Science 257:1900–1905Google Scholar
  75. Reif F (1965) Fundamentals of statistical and thermal physics. McGraw-Hill, Inc., New YorkGoogle Scholar
  76. Rotsch C, Braet F, Wisse E, Radmacher M (1997) AFM imaging and elasticity measurements of living rat liver macrophages. Cell Biology International 21:685–696CrossRefGoogle Scholar
  77. Rotsch C, Radmacher M (2000) Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophysical Journal 78:520–535Google Scholar
  78. Schmidt FG, Hinner B, Sackmann E, Tang JX (2000) Viscoelastic properties of semiflexible filamentous bacteriophage fd. Physical Review E 62:5509–5517Google Scholar
  79. Schmidt FG, Ziemann F, Sackmann E (1996) Shear field mapping in actin networks by using magnetic tweezers. European Biophysics Journal 24:348–353CrossRefGoogle Scholar
  80. Schneider SW, Sritharan SW, Geibel JP, Oberleithner H, Jena B (1997) Surface dynamics in living acinar cells imaged by atomic force microscopy: identification of plasma membrane structures involved in exocytosis. Proceedings of the National Academy of Sciences of the United States of America 94:316–321CrossRefGoogle Scholar
  81. Schnurr B, Gittes F, MacKintosh FC, Schmidt CF (1997) Determining microscopic viscoelasticity in flexible and semiflexible polymer networks from thermal fluctuations. Macromolecules 30:7781–7792CrossRefGoogle Scholar
  82. Shroff SG, Saner DR, Lal R (1995) Dynamic micromechanical properties of cultured rat atrial myocytes measured by atomic force microscopy. American Journal of Physiology 269:C286–C289Google Scholar
  83. Sleep J, Wilson D, Simmons R, Gratzer W (1999) Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study. Biophysical Journal 77:3085–3095Google Scholar
  84. Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science 3:47–57CrossRefzbMATHMathSciNetGoogle Scholar
  85. Tao NJ, Lindsay SM, Lees S (1992) Measuring the microelastic properties of biological material. Biophysical Journal 63:1165–1169Google Scholar
  86. Tseng Y, Wirtz D (2001) Mechanics and multiple particle tracking microheterogeneity of α-actinin-crosslinked actin filament networks. Biophysical Journal 81:1643–1656Google Scholar
  87. Valberg PA (1984) Magnetometry of ingested particles in pulmonary macrophages. Science 224:513–516Google Scholar
  88. Valberg PA, Albertini DF (1985) Cytoplasmic motions, rheology, and structure probed by a novel magnetic particle method. Journal of Cell Biology 101:130–140CrossRefGoogle Scholar
  89. Valberg PA, Butler JP (1987) Magnetic particle motions within living cells: Physical theory and techniques. Biophysical Journal 52:537–550Google Scholar
  90. Valberg PA, Feldman HA (1987) Magnetic particle motions within living cells: Measurement of cytoplasmic viscosity and motile activity. Biophysical Journal 52:551–561Google Scholar
  91. Valentine MT, Dewalt LE, Ou-Yang HD (1996) Forces on a colloidal particle in a polymer solution: a study using optical tweezers. Journal of Physics: Condensed Matter (U.K.) 8:9477–9482CrossRefGoogle Scholar
  92. Valentine MT, Kaplan PD, Thota D, Crocker JC, Gisler T, Prud’homme RK, Beck M, Weitz DA (2001) Investigating the microenvironments of inhomogeneous soft materials with multiple particle tracking. Physical Review E 64:061506CrossRefGoogle Scholar
  93. van Megen W, Underwood SM, Pusey PN (1991) Nonergodicity parameters of colloidal glasses. Physical Review Letters 67:1586–1589Google Scholar
  94. Velegol D, Lanni F (2001) Cell Traction Forces on Soft Biomaterials. I. Microrheology of Type I Collagen Gels. Biophysical Journal 81:1786–1792Google Scholar
  95. Visscher K, Block SM (1998) Versatile optical traps with feedback control. Methods in Enzymology 298:460–479CrossRefGoogle Scholar
  96. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127Google Scholar
  97. Wang N, Ingber DE (1994) Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophysical Journal 66:1281–1289Google Scholar
  98. Wang N, Ingber DE (1995) Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry. Biochemistry and Cell Biology 73:327–335CrossRefGoogle Scholar
  99. Weeks ER, Crocker JC, Levitt AC, Schofield A, Weitz DA (2000) Three-dimensional imaging of structural relaxation near the colloidal glass transition. Science 287:627–631Google Scholar
  100. Weitz DA, Pine DJ, (1993) Diffusing-wave spectroscopy. In: Brown W (ed) Dynamic Light Scattering. Oxford University Press, Oxford, pp 652–721Google Scholar
  101. Xue JZ, Pine DJ, Milner ST, Wu XL, Chaikin PM (1992) Non-ergodicity and light scattering from polymer gels. Physical Review A 46:6550–6563CrossRefGoogle Scholar
  102. Yagi K (1961) The mechanical and colloidal properties of Amoeba protoplasm and their relations to the mechanism of amoeboid movement. Comparative Biochemistry and Physiology 3:73–91CrossRefGoogle Scholar
  103. Yamada S, Wirtz D, Kuo SC (2000) Mechanics of living cells measured by laser tracking microrheology. Biophysical Journal 78:1736–1747CrossRefGoogle Scholar
  104. Zaner KS, Valberg PA (1989) Viscoelasticity of F-actin measured with magnetic particles. Journal of Cell Biology 109:2233–2243CrossRefGoogle Scholar
  105. Ziemann F, Rädler J, Sackmann E (1994) Local measurements of viscoelastic moduli of entangled actin networks using an oscillating magnetic bead micro-rheometer. Biophysical Journal 66:2210–2216Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • M.L. Gardel
    • 1
  • M.T. Valentine
    • 1
  • D.A. Weitz
    • 1
  1. 1.Department of PhysicsHarvard UniversityCambridge

Personalised recommendations