Another look at abstraction in process algebra

Extended abstract
  • J. C. M. Baeten
  • R. J. van Glabbeek
Semantics, Concurrency
Part of the Lecture Notes in Computer Science book series (LNCS, volume 267)

Abstract

Central to theories of concurrency is the notion of abstraction. Abstraction from internal actions is the most important tool for system verification. In this paper, we look at abstraction in the framework of the Algebra of Communicating Processes (see BERGSTRA & KLOP [4, 6]). We introduce a hidden step η, and construct a model for the resulting theory ACPη. We briefly look at recursive specifications in this theory, and discuss the relations with Milner's silent step τ.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.C.M.Baeten, J.A.Bergstra & J.W.Klop, Conditional axioms and α/β-calculus in process algebra, report CS-R8502, Centre for Math. & Comp. Sci., Amsterdam 1985, to appear in: Proc. IFIP Conf. on Formal Description of Progr. Concepts (M.Wirsing, ed.), Gl. Avernæs 1986, North-Holland.Google Scholar
  2. [2]
    J.C.M.Baeten, J.A.Bergstra & J.W.Klop, On the consistency of Koomen's fair abstraction rule, to appear in Theor. Comp. Sci. 51 (1/2).Google Scholar
  3. [3]
    J.C. Baeten & R.J. van Glabbeek, Another look at abstraction in process algebra, report CS-R8701, Centre for Math. & Comp. Sci., Amsterdam 1987.Google Scholar
  4. [4]
    J.A. Bergstra & J.W. Klop, Process algebra for synchronous communication, Inf. & Control 60 (1/3), pp. 109–137, 1984.Google Scholar
  5. [5]
    J.A. Bergstra & J.W. Klop, Algebra of communicating processes with abstraction, Theor. Comp. Sci. 37 (1), pp. 77–121, 1985.CrossRefGoogle Scholar
  6. [6]
    J.A.Bergstra & J.W.Klop, Algebra of communicating processes, Proc. CWI Symp. Math. & Comp. Sci. (J. de Bakker, M.Hazewinkel & J.Lenstra eds.), pp. 89–138, North-Holland, 1986.Google Scholar
  7. [7]
    J.A.Bergstra, J.W.Klop & E.-R.Olderog, Failures without chaos: a new process semantics for fair abstraction, report CS-R8625, Centre for Math. & Comp. Sci., Amsterdam 1986, to appear in: Proc. IFIP Conf. on Formal Description of Progr. Concepts (M.Wirsing, ed.), Gl. Avernæs 1986, North-Holland.Google Scholar
  8. [8]
    S.D. Brookes, C.A.R. Hoare & A.W. Roscoe, A theory of communicating sequential processes, JACM 31 (3), pp. 560–599, 1984.MathSciNetGoogle Scholar
  9. [9]
    R.J. van Glabbeek, Bounded nondeterminism and the approximation induction principle in process algebra, Proc. STACS 87 (F.Brandenburg, G.Vidal-Naquet & M.Wirsing, eds.), Springer LANCS 247, pp. 336–347, 1987.Google Scholar
  10. [10]
    C.A.R.Hoare, Communicating sequential processes, Prentice Hall 1985.Google Scholar
  11. [11]
    R.Milner, A calculus of communicating systems, Springer LNCS 92, 1980.Google Scholar
  12. [12]
    R.Milner, Lectures on a calculus of communicating systems, (S.D.Brookes, A.W.Roscoe & G.Winskel, eds.), pp. 197–220, Springer LNCS 197, 1985.Google Scholar
  13. [13]
    D.M.R. Park, Concurrency and automata on infinite sequences, Proc. 5th GI Conf.(P. Deussen, ed.), Springer LNCS 104, pp. 167–183, 1981.Google Scholar
  14. [14]
    J.L.M. Vrancken, The algebra of communicating processes with empty process, report FVI 86-01, Dept. of Comp. Sci., Univ. of Amsterdam 1986.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • J. C. M. Baeten
    • 1
  • R. J. van Glabbeek
    • 2
  1. 1.Dept. of Computer ScienceUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Dept. of Software TechnologyCentre for Mathematics and Computer ScienceAmsterdamThe Netherlands

Personalised recommendations