Parallel 5-colouring of planar graphs

  • Torben Hagerup
  • Marek Chrobak
  • Krzysztof Diks
Parallel And Distributed Computing
Part of the Lecture Notes in Computer Science book series (LNCS, volume 267)


We show that a 5-colouring of the vertices of an n-vertex planar graph may be computed in O(log n log* n) time by an exclusive-read exclusive-write parallel RAM with O(n/(log n log* n)) processors. Our algorithm, while faster than all previously known methods, is at the same time the first parallel 5-colouring algorithm to achieve optimal speedup. It should be emphasized that although input to the algorithm is a planar graph, we do not require a planar embedding to be given as part of the input.

Other results concern the colouring of graphs of bounded genus and the construction of search structures for triangular planar subdivisions.


Planar Graph Search Structure Adjacency List Vertex Number Planar Embedding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AG]
    M. J. Atallah and M. T. Goodrich: “Efficient Plane Sweeping in Parallel”. Proceedings, 2nd Annual Symposium on Computational Geometry (1986), 216–225.Google Scholar
  2. [AH]
    K. Appel and W. Haken: “Every Planar Map is Four Colorable. Part I: Discharging”. Illinois Journal of Mathematics 21 (1977), 429–490.Google Scholar
  3. [AHK]
    K. Appel, W. Haken, and J. Koch: “Every Planar Map is Four Colorable. Part II: Reducibility”. Illinois Journal of Mathematics 21 (1977), 491–567.Google Scholar
  4. [AKS]
    M. Ajtai, J. Komlós, and E. Szemerédi: “An O(n log n) Sorting Network”. Proceedings, 15th Annual ACM Symposium on Theory on Computing (1983), 1–9.Google Scholar
  5. [B]
    B. Bollobás: “Extremal Graph Theory”. Academic Press, London, 1978.Google Scholar
  6. [BJ]
    F. Bauernöppel and H. Jung: “Fast Parallel Vertex Colouring”. Proceedings, International Conference on Fundamentals of Computation Theory (1985), LNCS 199, 28–35.Google Scholar
  7. [BK]
    J. Boyar and H. Karloff: “Coloring Planar Graphs in Parallel”. To appear in Journal of Algorithms.Google Scholar
  8. [C]
    R. Cole: “Parallel Merge Sort”. 27th Annual Symposium on Foundations of Computer Science (1986), 511–516.Google Scholar
  9. [CD]
    M. Chrobak and K. Diks: “Two Algorithms for Coloring Planar Graphs with 5 Colors”. Technical Report, Columbia University, January 1987.Google Scholar
  10. [CNS]
    N. Chiba, T. Nishizeki, and N. Saito: “A Linear 5-Coloring Algorithm of Planar Graphs”. Journal of Algorithms 2:4 (1981), 317–327.Google Scholar
  11. [CV]
    R. Cole and U. Vishkin: “Deterministic Coin Tossing with Applications to Optimal Parallel List Ranking”. Information and Control 70:1 (1986), 32–53.Google Scholar
  12. [D]
    K. Diks: “A Fast Parallel Algorithm for Six-Colouring of Planar Graphs”. Proceedings, 12th Symposium on Mathematical Foundations of Computer Science (1986), LNCS 233, 273–282.Google Scholar
  13. [E]
    S. Even: “Graph Algorithms”. Pitman, London, 1979.Google Scholar
  14. [F]
    G. N. Frederickson: “On Linear-Time Algorithms for Five-Coloring Planar Graphs”. Information Processing Letters 19:5 (1984), 219–224.Google Scholar
  15. [GJS]
    M. R. Garey, D. S. Johnson, and L. Stockmeyer: “Some Simplified N P-Complete Graph Problems”. Theoretical Computer Science 1 (1976), 237–267.CrossRefGoogle Scholar
  16. [GPS]
    A. V. Goldberg, S. A. Plotkin, and G. E. Shannon: “Parallel Symmetry-Breaking in Sparse Graphs”. Proceedings, 19th Annual ACM Symposium on Theory of Computing (1987).Google Scholar
  17. [H]
    T. Hagerup: “Parallel 5-Colouring of Planar Graphs”. Technical Report 10/1986, Universität des Saarlandes, November 1986.Google Scholar
  18. [K]
    D. Kirkpatrick: “Optimal Search in Planar Subdivisions”. SIAM Journal on Computing 12:1 (1983), 28–35.CrossRefGoogle Scholar
  19. [LM]
    R. J. Lipton and R. E. Miller: “A Batching Method for Coloring Planar Graphs”. Information Processing Letters 7:4 (1978), 185–188.Google Scholar
  20. [N]
    J. Naor: “A Fast Parallel Coloring of Planar Graphs with Five Colors”. To appear in Information Processing Letters.Google Scholar
  21. [W]
    M. H. Williams: “A Linear Algorithm for Colouring Planar Graphs with Five Colours”. The Computer Journal 28:1 (1985), 78–81.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Torben Hagerup
    • 1
  • Marek Chrobak
    • 2
  • Krzysztof Diks
    • 3
  1. 1.Fachbereich InformatikUniversität des SaarlandesSaarbrückenWest Germany
  2. 2.Department of Computer ScienceColumbia UniversityNew YorkUSA
  3. 3.Institute of InformaticsWarsaw University, PKiN VIIIp.WarsawPoland

Personalised recommendations