Logic programming with ions

  • M. A. Nait Abdallah
Inductive Inference, Logic And Functional Programming
Part of the Lecture Notes in Computer Science book series (LNCS, volume 267)


In this paper we consider the model theory of knowledge of MacCarthy et al. [6], and show how part of this theory can be formalized in an extended logic programming framework. To this end, we generalize the notion of an ion introduced in [7], and develop our alternative to the language and metalanguage amalgamation approach suggested by Bowen and Kowalski [1].


Logic Program Logic Programming Definite Clause Ionic Operator Springer LNCS 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    Bowen K.A. and Kowalski R.A.: Amalgamating language and metalanguage, in Logic Programming, K.L. Clark and S.-A. Taernlund ed, Academic Press (1982), pp 153–172Google Scholar
  2. [2].
    Clark K.L.: Negation as failure, in Logic and Data Bases, H. Gallaire and J. Minker ed, Plenum Press (1978), pp 293–324Google Scholar
  3. [3].
    van Emden M.H. and Kowalski R.: The semantics of predicate logic as a programming language, JACM 23, 4 (1976), pp. 733–742CrossRefGoogle Scholar
  4. [4].
    Kowalski R.: Logic for problem solving, Elsevier North Holland, New York (1979).Google Scholar
  5. [5].
    Kowalski R.: Logic programming, in IFIP 1983, R.E.A. Mason ed., Elsevier Science Pub. (1983), pp 133–145Google Scholar
  6. [6].
    McCarthy J., Sato M., Hayashi T., Igarashi S.: On the model theory of knowledge, Stanford A.I. Lab. memo AIM-312 (1978)Google Scholar
  7. [7].
    Nait Abdallah M.A.: Ions and local definitions in logic programming, Springer LNCS # 210, pp 60–72 (1986)Google Scholar
  8. [8].
    Nait Abdallah M.A.: Procedures in Horn-clause programming, Springer LNCS # 255, pp 433–447 (1986)Google Scholar
  9. [9].
    Nait Abdallah M.A.: AL-KHOWARIZMI, a formal system for higher-order logic programming, Springer LNCS # 233, pp 545–553 (1986)Google Scholar
  10. [10].
    Tarski A.: The concept of truth in formalized languages, in Logic, semantics and metamathematics, A. Tarski, trans. J.H. Woodger, Oxford Univ. Press, pp 152–278 (1956)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • M. A. Nait Abdallah
    • 1
  1. 1.Department of Computer ScienceUniversity of Western OntarioLondonCanada

Personalised recommendations