On barzdin's conjecture

  • Thomas Zeugmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 265)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    D. Angluin and C. Smith, A survey of inductive inference: theory and methods, Computing Surveys 15 (1983), 237–269Google Scholar
  2. (2).
    Theory of algorithms and programs; I, II, III, Ya. M. Barzdin ed. Latvian State University, Riga, (1974), (1975), (1977) (in russian)Google Scholar
  3. (3).
    Ya. M. Barzdin, personal communicationGoogle Scholar
  4. (4).
    M. Blum, Machine independent theory of complexity of recursive functions, J. ACM 14 (1967), 322–336Google Scholar
  5. (5).
    L. Blum and M. Blum, Toward a mathematical theory of inductive inference, Inf. and Control 28 (1975), 122–155Google Scholar
  6. (6).
    J. Case and C. Smith, Comparison of identification criteria for machine inductive inference, Theoret. Comp. Sci. (1983), 193–220Google Scholar
  7. (7).
    E. M. Gold, Limiting recursion, J. Symbolic Logic 30 (1965), 28–48Google Scholar
  8. (8).
    J. P. Helm, On effectively computable operators. Z. Math. Logik Grundlagen Math. 17 (1971), 231–244Google Scholar
  9. (9).
    R. Klette and R. Wiehagen, Research in the theory of inductive inference by GDR mathematicians — a survey, Inf. Science 22 (1980) 149–169Google Scholar
  10. (10).
    R. Lindner, Algorithmische Erkennung, Dissertation B, Friedrich Schiller Universität Jena, 1972Google Scholar
  11. (11).
    N. Minicozzi, Some natural properties of strong-identification in inductive inference. Theoret. Comp. Sci. 2 (1976), 345–360Google Scholar
  12. (12).
    D. Osherson, M. Stob and S. Weinstein, Systems that learn, MIT Press, Cambridge, Mass., 1986Google Scholar
  13. (13).
    H. Jr. Rogers, Theory of recursive functions and effective computability, McGraw Hill, New York 1967Google Scholar
  14. (14).
    B.A. Trakhtenbrot and Ya. M. Barzdin, Finite automata-behavior and synthesis, fundamental studies in computer science 1 (North-Holland, American Elsevier, 1975)Google Scholar
  15. (15).
    R. Wiehagen, personal communicationGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Thomas Zeugmann
    • 1
  1. 1.Department of MathematicsHumboldt University BerlinBerlinGerman Democratic Republic

Personalised recommendations