Gauss elimination algorithms for mimd computers

  • M. Cosnard
  • M. Marrakchi
  • Y. Robert
  • D. Trystram
Namerical Algorithms (Session 3.2)
Part of the Lecture Notes in Computer Science book series (LNCS, volume 237)


This paper uses a graph-theoretic approach to analyse the performances of several parallel variations of the Gaussian triangularization algorithm on an MIMD computer. Dongarra et al. [DGK] have studied various parallel implementations of this method for a vector pipeline machine. We obtain complexity results permitting to select among these parallel algorithms.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [CRT1]
    M. COSNARD, Y. ROBERT, D. TRYSTRAM, Résolution parallèle de systèmes linéaires denses par diagonalisation, Bulletin EDF série C, no 2, 1986Google Scholar
  2. [CRT2]
    M. COSNARD, Y. ROBERT, D. TRYSTRAM, Comparaison des méthodes parallèles de diagonalisation pour la résolution de systèmes linéaires denses, C. R. A. S. Paris 301, I, 16, 1985, 781–784Google Scholar
  3. [CMRT]
    M. COSNARD, J.M. MULLER, Y. ROBERT, D. TRYSTRAM, Communication costs versus computation costs in parallel Gaussian elimination, Proc. of Conf. Parallel Algorithms and Architectures, M. Cosnard et al. eds, North Holland, to appearGoogle Scholar
  4. [DGK]
    J.J. DONGARRA, F.G. GUSTAVSON, A. KARP, Implementing linear algebra algorithms for dense matrices on a vector pipeline machine, SIAM Review 26, 1, 1984, 91–112CrossRefGoogle Scholar
  5. [Fei]
    M. FEILMEIER, Parallel computers — Parallel mathematics, IMACS North Holland, 1977Google Scholar
  6. [Fly]
    M.J. FLYNN, Very high-speed computing systems, Proc. IEEE 54, 1966, 1901–1909Google Scholar
  7. [GP]
    D.D. GAJSKI, J.K. PEIR, Essential issues in multiprocessors systems, IEEE Computer, June 1985, 9–27Google Scholar
  8. [GV]
    G. H. GOLUB, C. F. VAN LOAN, Matrix computation, The Johns Hopkins University Press, 1983Google Scholar
  9. [Hel]
    D. HELLER, A survey of parallel algorithms in numerical linear algebra, SIAM Review 20, 1978, 740–777CrossRefGoogle Scholar
  10. [HJ]
    R.W. HOCKNEY, C.R. JESSHOPE, Parallel computers: architectures, programming and algorithms, Adam Helger, Bristol, 1981Google Scholar
  11. [HB]
    K. HWANG, F. BRIGGS, Parallel processing and computer architecture, MC Graw Hill, 1984Google Scholar
  12. [Kum]
    S.P. KUMAR, Parallel algorithms for solving linear equations on MIMD computers, PhD. Thesis, Washington State University, 1982Google Scholar
  13. [KK]
    S.P. KUMAR, J.S. KOWALIK, Parallel factorization of a positive definite matrix on an MIMD computer, Proc. ICCD 84, 410–416Google Scholar
  14. [LKK]
    R.E. LORD, J.S. KOWALIK, S.P. KUMAR, Solving linear algebraic equations on an MIMD computer, J. ACM 30, 1, 1983, 103–117CrossRefGoogle Scholar
  15. [Rot]
    G. ROTE, Personnal CommunicationGoogle Scholar
  16. [Saa]
    Y. SAAD, Communication complexity of the Gaussian elimination algorithm on multiprocessors, Report DCS/348, Yale University, 1985Google Scholar
  17. [Sam]
    A. SAMEH, An overview of parallel algorithms, Bulletin EDF, 1983, 129–134Google Scholar
  18. [Sch]
    U. SCHENDEL, Introduction to Numerical Methods for Parallel Computers, Ellis Horwood Series, J. Wiley & Sons, New York, 1984Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • M. Cosnard
    • 1
  • M. Marrakchi
    • 1
  • Y. Robert
    • 1
  • D. Trystram
    • 2
  1. 1.CNRS, Laboratoire TIM3St Martin d'Hères CedexFrance
  2. 2.Ecole Centrale PARISChatenay Malabry CedexFrance

Personalised recommendations