Advertisement

Computational aspects of reduction strategies to construct resolutions of monomial ideals

  • H.Michael Möller
  • Ferdinando Mora
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 228)

Keywords

Reduction Strategy Polynomial Ring Hilbert Scheme Hilbert Function Monomial Ideal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (BAY).
    D.BAYER The division algorithm and the Hilbert scheme, Ph.D. Thesis, Harvard 1982Google Scholar
  2. (BU1).
    B.BUCHBERGER Ein Algorithmus zu auffinden der Basiselemente des Restlassenringe nach einem nulldimensionalen Polynomideal, Ph.D. Thesis, Innsbruck, 1965Google Scholar
  3. (BU2).
    B. BUCHBERGER Ein algorithmisches Kriterium für die Losbarkeit eines algebraischen Gleichungssystems, Aeq. Math. 4 (1970) 364–383Google Scholar
  4. (BU3).
    B. BUCHBERGER A criterion for detecting unnecessary reductions in the construction of Gröbner bases, Proc. EUROSAM 79, L.N.Comp.Sci. 72 (1979) 3–21Google Scholar
  5. (DEP).
    C.DE CONCINI, D.EISENBUD, C.PROCESI Hodge Algebras, Asterisque 91 (1982)Google Scholar
  6. (MM1).
    H.M.MOELLER, F.MORA New constructive methods in classical ideal theory, J.Alg. 96 (1986)Google Scholar
  7. (MM2).
    H.M. MOELLER, F. MORA The computation of the Hilbert function, Proc. EUROCAL 83, L.N.Comp.Sci. 162 (1983) 157–167Google Scholar
  8. (MOL).
    H.M. MOELLER A reduction strategy for the Taylor resolution, Proc. EUROCAL 85 II, L.N.Comp.Sci. 204 (1985) 526–534Google Scholar
  9. (LYU).
    G.LYUBEZNIK Ph.D. Thesis, Columbia Univ., 1984Google Scholar
  10. (TAY).
    D.TAYLOR Ideals generated by monomials in an R-sequence, Ph.D.Thesis, Chicago 1960Google Scholar
  11. (MIT).
    B.MITCHELL Theory of categories, New York, 1965Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • H.Michael Möller
    • 1
  • Ferdinando Mora
    • 2
  1. 1.FernuniversitätHagen
  2. 2.UniversitàGenova

Personalised recommendations