Coronal heating and the X-ray and microwave emission from M-dwarf flare stars

  • Gordon D. Holman
Session III: Small Scale Atmospheric Structures: Data
Part of the Lecture Notes in Physics book series (LNP, volume 254)


A current-dissipation model for coronal heating is used to study the conditions required for simultaneously generating the X-ray and microwave emission observed from M-dwarf flare stars. The hot X-ray emitting plasma is produced through Joule heating in the current sheets. The microwave emission may be either thermal cyclotron or gyrosynchrotron emission (Linsky and Gary 1983). If the current drift speed is on the order of the ion sound speed, in addition to heating, significant electron acceleration will also occur. It is shown that, under conditions required to heat the coronal plasma, the drift speed is likely to be greater than the sound speed and enough energetic electrons are accelerated to explain the microwave emission as gyrosynchrotron radiation from nonthermal electrons. The results are compared to the hard X-ray microflares observed on the sun.


Current Sheet Coronal Plasma Microwave Emission Coronal Heating Drift Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brown, J. C. 1971, Solar Phys., 18, 489.CrossRefGoogle Scholar
  2. Cox, J. J., and Gibson, D. M. 1985,. in Radio Stars, ed. R. M. Hlellming and D. M. Gibson (Dordrecht: Reidel), p. 233.Google Scholar
  3. Heyvaerts, J. 1985, in IAU Symp. 107, Unstable Current Systems and Plasma Instabilities in Astrophysics, ed. M. R. Kundu and G. D. Holman (Dordrecht: Reidel), p. 95.Google Scholar
  4. Hollweg, J. V. 1981, in Solar Active Regions, ed. F. Q. Orrall (Boulder: Colorado Assoc. Univ. Press), p. 277.Google Scholar
  5. Holman, G. D. 1985, Ap. J., 293, 584.CrossRefGoogle Scholar
  6. Ionson, J. A. 1985, Astron. Astrophys., 146, 199.Google Scholar
  7. Kundu, M. R., and Shevgaonkar, R. K. 1985, in Radio Stars, p. 229.Google Scholar
  8. Kuperus, M., Ionson, J. A., and Spicer, D. A. 1981, Ann. Rev. Astron. Astrophys., 19, 7.CrossRefGoogle Scholar
  9. Lang, K., Willson, R., and Pallavicini, R. 1985, in Radio Stars, p. 267.Google Scholar
  10. Lin, R. P., Schwartz, R. A., Kane, S. R., Pelling, R. M., and Hurley, K. C. 1984, Ap. J., 283, 421.CrossRefGoogle Scholar
  11. Linsky, J. L., and Gary, D. E. 1983, Ap. J., 274, 776.CrossRefGoogle Scholar
  12. Mullan, D. J. 1985, Ap. J., 295, 628.CrossRefGoogle Scholar
  13. Rosner, R., Tucker, W., and Vaiana, G. 1978, Ap. J., 220, 643.CrossRefGoogle Scholar
  14. Swank, J. H., and Johnson, H. M. 1982, Ap. J. (Letters), 259, L67.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Gordon D. Holman
    • 1
  1. 1.Laboratory for Astronomy and Solar Physics Code 682NASA/Goddard Space Flight CenterGreenbelt

Personalised recommendations