Field Theory, Quantum Gravity and Strings pp 107-126 | Cite as
Stochastic de sitter (inflationary) stage in the early universe
Abstract
The dynamics of a large-scale quasi-homogeneous scalar field producing the de Sitter (inflationary) stage in the early universe is strongly affected by small-scale quantum fluctuations of the same scalar field and, in this way, becomes stochastic. The evolution of the corresponding large-scale space-time metric follows that of the scalar field and is stochastic also. The Fokker-Planck equation for the evolution of the large-scale scalar field is obtained and solved for an arbitrary scalar field potential. The average duration of the de-Sitter stage in the new inflationary scenario is calculated (only partial results on this problem were known earlier). Applications of the developed formalism to the chaotic inflationary scenario and to quantum inflation are considered. In these cases, the main unsolved problem lies in initial pre-inflationary conditions.
Keywords
Scalar Field Quantum Cosmology Stochastic Force Inflationary Scenario Effective Cosmological ConstantPreview
Unable to display preview. Download preview PDF.
References
- 1.A.A. Starobinsky, Phys.Lett. 91B (1980) 99.Google Scholar
- 2.A.H. Guth, Phys.Rev. D23 (1981) 347.Google Scholar
- 3.A.D. Linde, Pys.Lett. 108B (1982) 389.Google Scholar
- 4.A. Albrecht, P.J. Steinhardt, Phys.Rev.Lett. 48 (1982) 1220.Google Scholar
- 5.
- 6.L.A. Kofman, A.D. Linde, A.A. Starobinsky, Phys.Lett. 157B (1985) 361.Google Scholar
- 7.V.F. Mukhanov, G.V. Chibisov, Pisma v ZhETF 33 (1981) 549.Google Scholar
- 8.S.W. Hawking, I.G. Moss, Phys.Lett. 110B (1982) 35.Google Scholar
- 9.A.D. Linde, Phys. Lett. 116B (1982) 335.Google Scholar
- 10.A.A. Starobinsky, Phys.Lett. 117B (1982) 175.Google Scholar
- 11.J. Ellis, D.V. Nanopoulos, K.A. Olive, K.Tamvakis, Phys.Lett. 120B (1983) 331.Google Scholar
- 12.G.F. Mazenko, W.G. Unruh, R.M. Wald, Phys.Rev. D31 (1985) 273.Google Scholar
- 13.M. Evans, J.G. Mc Carthy, Phys.Rev. D31 (1985) 1799.Google Scholar
- 14.A. Vilenkin, Phys.Lett. 1158 (1982) 91.Google Scholar
- 15.A. Vilenkin, L.H. ford, Phys.Rev. D26 (1982) 1231.Google Scholar
- 16.A. Starobinsky, in: Proc. 6th Sov.Gravit.conf., Moscow 3–5 july 1984 (MGPI Press, Moscow, 1984), vol. 2, p. 39.Google Scholar
- 17.A. Starobinsky, in: Fundamental Interactions, ed. V.N. Ponomarev (MGPI Press, Moscow, 1984) p. 54.Google Scholar
- 18.S.W. Hawking, Phys.Lett. 115B (1982) 295.Google Scholar
- 19.A.H. Guth, S.-Y. Pi, Phys.Rev.Lett. 49 (1982) 1110.Google Scholar
- 20.J. Bardeen, P.I. Steinhardt, M.S. Turner, Phys.Rev. D28 (1983) 679.Google Scholar
- 21.
- 22.L. Parker, S.A. Fulling, Phys.Rev. D7 (1973) 2357.Google Scholar
- 23.
- 24.S.W. Hawking, Nucl.Phys. B239 (1984) 257.Google Scholar
- 25.D.N. Page, Class.Quantum Grav. 1 (1984) 417.Google Scholar
- 26.V.A. Belinsky, L.P. Grishchuk, I.M. Khalatnikov, Ya.B. Zeldovich, Phys.Lett. 155B (1985) 232.Google Scholar
- 27.J.B. Hartle, S.W. Hawking, Phys.Rev. D28 (1983) 2960.Google Scholar
- 28.Ya.B. Zeldovich, A.A. Starobinsky, Pis'ma Astron.Zh. 10 (1984) 323 | Sov.Astron. Lett. 10 (1984) 1351.Google Scholar
- 29.A.D. Linde, Zh.Eksp.Teor.Fiz. 87 (1984) 369; Lett. Nuovo Cimento 39 (1984) 401.Google Scholar
- 30.A. Vilenkin, Phys.Rev. D30 (1984) 509.Google Scholar
- 31.
- 32.E.P. Tryon, Nature 246 (1973) 396.Google Scholar
- 33.P.I. Fomin, Dokl.Akad.Nauk Ukrain. SSR (1975) 831.Google Scholar
- 34.L.P. Grishchuk, Ya.B. Zeldovich, in: Quantum structure of space-time, eds. M. Duff and C. Isham (Cambridge U.P., Cambridge, 1982) p. 409.Google Scholar
- 35.
- 36.A.A. Starobinsky, talk at the seminar in the P.K. Sternberg State Astronomical Institute (Moscow, November 1983), unpublished.Google Scholar