Varietes de Semis Groupes et Mots Infinis

  • Jean-Pierre Pécuchet
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 210)

Résumé

Nous étudions la possibilité d'étendre la théorie des variétés de Eilenberg au oas des mots infinis. La situation est plus complexe et les résultats moins satisfaisants que dans le cas des mots finis. Nous obtenons cependant des descriptions intéressantes des classes associées aux variétés les plus usuelles. Cette étude permet également de mieux saisir la portée du théorème de Mac Naughton.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. [1]
    A. Arnold (a paraitre): A syntactic congruence for rational w-languages.Google Scholar
  2. [2]
    A. Arnold, M. Nivat (1982): Comportement de processus;Colloque des Mathématiques de l'Informatique, Paris,35–68.Google Scholar
  3. [3]
    J.A. Brzozowski, I. Simon (1973): Characterizations of locally testable events; Discrete Math.,4,243–271.CrossRefGoogle Scholar
  4. [4]
    J.R. Buchi (1962): On a decision method in restricted second order arithmetic; Logic,Methodology and Philosophy of Science, (Proc. 1960 Int. Congr.),Stanford Univ. Press,1–11.Google Scholar
  5. [5]
    S. Eilenberg (1976): Automata,Languages and Machines,Vol. 8,Academic Press.Google Scholar
  6. [6]
    G. Lallement (1979): Semigroups and Combinatorial Applications,Whiley, New-York.Google Scholar
  7. [7]
    L.H. Landweber (1969): Decision Problems for w-automata;Math. Syst. Th.,3,376–384.Google Scholar
  8. [8]
    R. Mac Naughton (1966): Testing and generating infinite sequences by a finite automaton; Inf. and Control,9,521–530.Google Scholar
  9. [9]
    R. Mac Naughton (1974): Algebraic decision procedures for local testability; Math. Syst. Th.,8,60–76.Google Scholar
  10. [10]
    D. Muller (1963): Infinite sequences and finite machines;Switching Theory and Logical Design,(proc. 4th IEEE Symp.),3–16.Google Scholar
  11. [11]
    J.P. Pécuchet (en préparation): Etude syntaxique des parties reconnaissables de mots infinis.Google Scholar
  12. [12]
    D. Perrin (1982): Variétés de semigroupes et mots infinis;C. R. Acad. Sci. Paris,295,595–598.Google Scholar
  13. [13]
    D. Perrin (1984): Recent Results on Automata and Infinite Words;Math. Found. Comp. Sci., (Proc. 11th symp. Praha), Goos and Hartmanis ed.,Springer.Google Scholar
  14. [14]
    J.E. Pin (1984): Variétés de langages et de monoides,Masson,Paris.Google Scholar
  15. [15]
    M.P. Schutzenberger (1965): On finite monoids having only trivial subgroups;Inf. and Control,8,190–194.Google Scholar
  16. [16]
    I. Simon (1975): Piecewise testable events;Automata Theory and Formal Languages, (2nd G.I. Conf.), Lect. Notes in Comp. Sci.,33,Springer-Verlag,214–322.Google Scholar
  17. [17]
    W. Thomas (1979): Star-free regular sets of w-sequences;Inf. and Control, 42,148–156.Google Scholar
  18. [18]
    W. Thomas (1981): A combinatorial approach to the theory of w-automata;Inf. and Control,48,261–283.Google Scholar
  19. [19]
    K. Wagner (1979): On w-Regular Sets;Inf. and Control,43,123–177.Google Scholar
  20. [20]
    Y. Zalostein (1972): Locally testable langages;J. Comp. Syst. Sci.,6,151–167.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Jean-Pierre Pécuchet
    • 1
  1. 1.LITP CNRS Laboratoire d'Informatique de Rouen Faculté des SciencesMont-Saint-Aignant

Personalised recommendations