p-Adic algorithms and the computation of zeros of p-adic l-functions

  • Karin Lamprecht
  • Horst G. Zimmer
Computational Number Theory
Part of the Lecture Notes in Computer Science book series (LNCS, volume 204)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    IWASAWA, K.: Lectures on p-adic L-functions. Ann. of Math. Studies No. 74, Princeton University Press, Princeton, N.J., 1972.Google Scholar
  2. [2]
    KUBOTA, T., and LEOPOLDT, H.W.: Eine p-adische Theorie der Zetawerte. I. Einführung der p-adischen Dirichletschen L-Funktionen. J. reine u. angew. Math. 214/215 (1964), 328–339.Google Scholar
  3. [3]
    LAMPRECHT, K.: Integration auf proendlichen Gruppen und p-adische L-Funktionen. Diplomarbeit, Saarbrücken 1984.Google Scholar
  4. [4]
    LANG, S.: Cyclotomic Fields, I, II. Springer-Verlag, New York·Heidelberg·Berlin 1978, 1980.Google Scholar
  5. [5]
    MAZUR, B., and WILES, A.: Analogies between function fields and number fields. Amer. J. Math. 105 (1983), 507–521.Google Scholar
  6. [6]
    WAGSTAFF, S.S., Jr.: Zeros of p-adic L-functions. Math. Comp. 29 (1975), 1138–1143.Google Scholar
  7. [7]
    WAGSTAFF, S.S., Jr.: Zeros of p-adic L-functions, II. Number Theory Related to Fermat's Last Theorem, Birkhäuser Verlag, Boston 1982, 297–308.Google Scholar
  8. [8]
    WASHINGTON, L.C.: A note on p-adic L-functions. J. Number Theory 8 (1976), 245–250.Google Scholar
  9. [9]
    WASHINGTON, L.C.: Introduction to Cyclotomic Fields. Springer-Verlag, New York·Heidelberg·Berlin 1982.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Karin Lamprecht
    • 1
  • Horst G. Zimmer
    • 1
  1. 1.Fachbereich 9 Mathematik der Universität des SaarlandesSaarbrücken

Personalised recommendations