Gröbner bases using SAC2

  • W. Böge
  • R. Gebauer
  • H. Kredel
Algebraic Algorithms III
Part of the Lecture Notes in Computer Science book series (LNCS, volume 204)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References (selection)

  1. [1]
    B. Buchberger: Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems. Aequationes mathematicae, vol. 4, p. 374–383, 1970CrossRefGoogle Scholar
  2. [2]
    B. Buchberger, F. Winkler: An algorithm for constructing canonical bases ( Gröbner Bases ) of polynomial ideals. CAMP-Publ. Nr. 81-10.0, Johannes Kepler Universität Linz, September 1981Google Scholar
  3. [3]
    B. Buchberger, G. Collins, R. Loos: Computer Algebra — Symbolic and Algebraic Computation Springer: Wien, 1982Google Scholar
  4. [4]
    B. Buchberger: Groebner Bases: An Algorithmic Method in Polynomial Ideal Theory. Chapter 6 in: Recent Trends in Multidimensional Systems Theory. (N.K. Bose ed.) D. Reidel Publishing Company, to appear 1985Google Scholar
  5. [5]
    G. E. Collins, R. G. Loos: ALDES and SAC-2 now available. SAC2 — Symbolic and Algebraic Computation Version 2, a computer algebra system, ALDES — ALgorithm DEScription language ACM SIGSAM Bulletin Vol. 14, No. 2, 1980Google Scholar
  6. [6]
    R. Gebauer, H. Kredel: Common Distributive Polynomial System. 04/1983 Distributive Integral Polynomial System. 06/1983 Distributive Rational Polynomial System. 08/1983 Distributive Arbitrary Domain Polynomial System. 12/1983 Institut für Angewandte Mathematik, Universität Heidelberg, 1983Google Scholar
  7. [7]
    R. Gebauer, H. Kredel: Buchberger Algorithm System. 12/1983 loc. cit. see also: SIGSAM Bulletin, Volume 18 Number 1, 1984.Google Scholar
  8. [8]
    R. Gebauer, H. Kredel: Real solution system for algebraic equations. 06/1984Google Scholar
  9. [9]
    W. L. Trinks: Über Buchbergers Verfahren Systeme algebraischer Gleichungen zu lösen. J. of Number Theory, vol. 10, pp. 475–488, 1978CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • W. Böge
    • 1
  • R. Gebauer
    • 1
  • H. Kredel
    • 1
  1. 1.Institute for Applied MathematicsUniversity of HeidelbergHeidelbergF.R.G

Personalised recommendations