Parameter preserving data type specifications

  • Peter Padawitz
Colloquium On Trees In Algebra And Programming Specifications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 185)


Term rewriting methods are used for solving the persistency problem of parameterized data type specifications. Such a specification is called persistent if the parameter part of its algebraic semantics agrees with the semantics of the parameter specification. Since persistency mostly cannot be guaranteed for the whole equational variety of the parameter specification, the persistency criteria developed here mainly concern classes of parameter algebras with "built-in" logic.


Critical Pair Conservative Extension Operation Symbol Small Relation Initial Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. /1/.
    ADJ: J.A. Goguen, J.W. Thatcher, E.G. Wagner: An Initial Algebra Approach to the Specification, Correctness and Implementation of Abstract Data Types, in R.T. Yeh, ed., Current Trends in Programming Methodology, Vol. 4, Prentice-Hall (1978), 80–149Google Scholar
  2. /2/.
    ADJ: J.W. Thatcher, E.G. Wagner, J.B. Wright: Data Type Specification: Parameterization and the Power of Specification Techniques, ACM Transactions on Programming Languages and Systems 4 (1982), 711–732CrossRefGoogle Scholar
  3. /3/.
    ADJ: H. Ehrig, H.-J. Kreowski, J.W. Thatcher, E.G. Wagner, J.B. Wright: Parameter Passing in Algebraic Specification Languages, Proc. Workshop in Program Specification, Springer LNCS 134 (1982), 322–369Google Scholar
  4. /4/.
    G. Birkhoff: On the Structure of Abstract Algebras, Proc. Cambridge Phil. Soc. 31 (1935), 433–454Google Scholar
  5. /5/.
    N. Dershowitz: Orderings for Term-Rewriting Systems, Theoretical Computer Science 17 (1982), 279–301CrossRefGoogle Scholar
  6. /6/.
    H. Ganzinger: Parameterized Specifications: Parameter Passing and Implementation with Respect to Observability, TOPLAS 5,3 (1983), 318–354Google Scholar
  7. /7/.
    G. Huet, D.C. Oppen: Equations and Rewrite Rules: A Survey, in: R.V. Book, ed., Formal Language Theory: Perspectives and Open Problems, Academic Press (1980)Google Scholar
  8. /8/.
    J.-P. Jouannaud: Confluent and Coherent Equational Term Rewriting Systems. Application to Proofs in Abstract Data Types, Proc. Coll. on Trees in Algebra and Programming, Springer LNCS 159 (1983), 269–283Google Scholar
  9. /9/.
    P. Padawitz: Correctness, Completeness, and Consistency of Equational Data Type Specifications, Ph.D.thesis, Technische Universität Berlin (1983)Google Scholar
  10. /10/.
    P. Padawitz: Towards a Proof Theory of Parameterized Specifications, Proc. Symp. on Semantics of Data Types, Springer LNCS 173 (1984), 375–391Google Scholar
  11. /11/.
    H. Perdix: Proprietes Church-Rosser de Systemes de Reecriture Equationnels ayant la Propriete de Terminaison faible, Proc. Symp. on Theoretical Aspects of Computer Science, Springer LNCS 166 (1984), 97–108Google Scholar
  12. /12/.
    J.L. Remy: Proving Conditional Identities by Equational Case Reasoning, Rewriting and Normalization, Research Report, Nancy (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Peter Padawitz
    • 1
  1. 1.Fakultät für InformatikUniversität PassauPassauF.R.G.

Personalised recommendations