Locally synchronous complexity in the light of the trans-box method

Extended abstract
  • Edward G. Belaga
Contibuted Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 166)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Belaga. — Some problems involved in the calculation of polynomials (Russian), Dokl. Akad. Nauk SSSR, vol. 123 (1958) 775–777.Google Scholar
  2. 2.
    E. Belaga. — Evaluation of polynomials of one variable with preliminary processing of the coefficients, Problems of Cybernetics, vol. 5 (1964) 1–13.Google Scholar
  3. 3.
    E. Belaga. — An introduction to the trans-box method, Report, Université Louis Pasteur, Strasbourg, France, January 1983.Google Scholar
  4. 4.
    E. Belaga. — The trans-box method fundamentals, Parts 1–3, Université Louis Pasteur, Strasbourg, France, January 1983.Google Scholar
  5. 5.
    E. Belaga. — Through the mincing machine with a layer cake, Part 1, Report, Université Louis Pasteur, Strasbourg, France, Avril 1983.Google Scholar
  6. 6.
    E. Belaga. — Through the mincing machine with a layer cake, Part 2, Report, Université Louis Pasteur, Strasbourg, France, October 1983.Google Scholar
  7. 7.
    E. Belaga. — Through the mincing machine with a layer cake, Part 3: Linear functions and algorithms, To appear.Google Scholar
  8. 8.
    E. Belaga. — Through the mincing machine with a layer cake, Part 4: Bilinear functions and algorithms, To appear.Google Scholar
  9. 9.
    E. Belaga. — Rank resistibility, In preparation.Google Scholar
  10. 10.
    E. Belaga. — A new look at a straight-line algorithm, To appear.Google Scholar
  11. 11.
    A. Borodin and I. Munro. — The Computational Complexity of Algebraic and Numerical Problems, American Elsevier, New York, 1975.Google Scholar
  12. 12.
    A. Borodin. — Structured vs general models in computational complexity, Monographie no30 de l'Enseignement Mathématique, (1982) 47–65.Google Scholar
  13. 13.
    P. Cohn. — Universal Algebra, Harper & Row, New York, Evanston & London, and John Weatherhill, Inc. Tokyo, 1965.Google Scholar
  14. 14.
    J. Conway. — Regular Algebra and Finite Machines, London, 1971.Google Scholar
  15. 15.
    S. Cook. — Towards a complexity theory of synchronous parallel computation, Monographie no 30 de l'Enseignement Mathématique, Université de Genève (1982), 75–100.Google Scholar
  16. 16.
    S. Cook. — The classification of problems which have fast parallel algorithms, Lecture Notes in Computer Science 158, Springer-Verlag, Berlin, etc. (1983) 78–93.Google Scholar
  17. 17.
    G. Lorentz. — Approximation of Functions, New York, etc. 1966.Google Scholar
  18. 18.
    T. Motzkin. — Evaluation of polynomials and evaluation of rational functions, Bull. Amer. Math. Soc., vol. 61: 2 (1955), p. 163.Google Scholar
  19. 19.
    J. Savage. — The complexity of computing, New York, 1965.Google Scholar
  20. 20.
    C. Shannon. — A symbolic analysis of relay and switching circuits, Trans. AIEE, vol. 57 (1938) 713–723.Google Scholar
  21. 21.
    A. Slisenko. — Complexity problems in computation theory, Russian Math. Surveys, vol. 36, n°6 (1981) 23–125.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Edward G. Belaga
    • 1
  1. 1.C.N.R.S. Université Louis PasteurStrasbourg CédexFrance

Personalised recommendations