Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations

  • D. Lazard
Algorithms 2 — Polynomial Ideal Bases
Part of the Lecture Notes in Computer Science book series (LNCS, volume 162)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bay]
    D.A. Bayer. The division algorithm and the Hilbert scheme, Ph D, Harward Univ., 1982.Google Scholar
  2. [Buc 1]
    B. Buchberger. Ein algorithmishes Kriterium fur die Lösbarkeit eines algebraischen Gleischungsystem. Aequationes Matematicea 4 (1970), p. 374–383.Google Scholar
  3. [Buc 2]
    B. Buchberger. A criterion for detecting unnecessary reductions in the construction of Gröbner bases, EUROSAM'79, Lect. Notes in Comp. Sc. no 72 (1979), p. 3–21.Google Scholar
  4. [Buc 3]
    B. Buchberger. A note on the complexity of constructing Gröbner bases. These proceedings.Google Scholar
  5. [Kap]
    I. Kaplansky. Commutative rings. Allyn and Bacon (Boston, 1970).Google Scholar
  6. [Laz 1]
    D. Lazard. Algèbre linéaire sur K[X1,...,Xn] et élimination. Bull. Soc. Math. France 105 (1977), p. 165–190.Google Scholar
  7. [Laz 2]
    D. Lazard. Systems of algebraic equations. EUROSAM 79, p. 88–94.Google Scholar
  8. [Laz 3]
    D. Lazard. Résolution des systèmes d'équations algébriques. Theor. Comp. Sciences 15 (1981), p. 77–110.Google Scholar
  9. [Laz 4]
    D. Lazard. Commutative Algebra and Computer Algebra, EUROCAM'82, Lect. Notes in Comp. Sc. no 144 (1982), p. 40–48.Google Scholar
  10. [Mor]
    F. Mora. An algorithm to compute the equations of tangent cones, EUROCAM'82, p. 158–165.Google Scholar
  11. [P.Y.]
    M. Pohst, D.Y.Y. Yun. On solving systems of algebraic equations via ideal bases and elimination theory SYMSAC 1981, p. 206–211.Google Scholar
  12. [Tri]
    W. Trinks, Ueber B. Buchberger Verfahren, Systeme algebraischer Gleischungen zu lösen, J. of Number Theory 10 (1978), p. 475–488.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • D. Lazard
    • 1
  1. 1.Mathématiques - InformatiqueUniversité de PoitiersPoitiers Cedex

Personalised recommendations