Factoring polynomials over algebraic number fields

  • A. K. Lenstra
Alsorithms 4 — Factorization
Part of the Lecture Notes in Computer Science book series (LNCS, volume 162)

Abstract

We present a polynomial-time algorithm for the factorization of univariate polynomials over algebraic number fields. Our algorithm is a direct generalization of the polynomial-time algorithm for the factorization of univariate polynomials over the rationals [7].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.R. Berlekamp, Factoring polynomials over large finite fields, Math. Comp. 24 (1970), 713–735.Google Scholar
  2. 2.
    W.S. Brown, The subresultant PRS algorithm, ACM Transactions on mathematical software 4 (1978), 237–249.Google Scholar
  3. 3.
    A.J. Goldstein, R.L. Graham, A Hadamard-type bound on the coefficients of a determinant of polynomials, SIAM Rev. 16 (1974), 394–395.Google Scholar
  4. 4.
    D.E. Knuth, The art of computer programming, vol. 2, Seminumerical algorithms, Addison Wesley, Reading, second edition 1981.Google Scholar
  5. 5.
    S. Landau, Factoring polynomials over algebraic number fields is in polynomial-time, unpublished manuscript, 1982.Google Scholar
  6. 6.
    A.K. Lenstra, Lattices and factorization of polynomials over algebraic number fields, Proceedings Eurocam 82, LNCS 144, 32–39.Google Scholar
  7. 7.
    A.K. Lenstra, H.W. Lenstra, Jr., L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), 515–534.Google Scholar
  8. 8.
    A.K. Lenstra, Factoring polynomials over algebraic number fields, Report IW 213/82, Mathematisch Centrum, Amsterdam 1982.Google Scholar
  9. 9.
    M. Mignotte, An inequality about factors of polynomials, Math. Comp. 28 (1974), 1153–1157.Google Scholar
  10. 10.
    P.J. Weinberger, L.P. Rothschild, Factoring polynomials over algebraic number fields, ACM Transactions on mathematical software 2 (1976), 335–350.Google Scholar
  11. 11.
    D.Y.Y. Yun, The Hensel lemma in algebraic manipulation, MIT, Cambridge 1974; reprint: Garland Publ. Co., New York 1980.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • A. K. Lenstra
    • 1
  1. 1.Mathematisch CentrumAmsterdamThe Netherlands

Personalised recommendations