A procedure for determining algebraic integers of given norm

  • U. Fincke
  • M. Pohst
Algorithms — Computational Number Theory
Part of the Lecture Notes in Computer Science book series (LNCS, volume 162)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S.I. Borewics und I,R. Safarevič, Zahlentheorie, Birkhäuser-Verlag, Basel und Stuttgart 1966, pp. 134–141.Google Scholar
  2. [2]
    U. Dieter, How to Calculate Shortest Vectors in a Lattice, Math. Comp., v. 29, 131, (1975), pp. 827–833.Google Scholar
  3. [3]
    D.E. Knuth, The art of computer programming, vol.2, Addison-Wesley, sec.ed. (1981), p.95.Google Scholar
  4. [4]
    A.K. Lenstra, H.W. Lenstr Jr., L. Lovász, Factoring Polynomials with Rational Coefficients, Math. Ann. 261 (1982), 515–534.Google Scholar
  5. [5]
    K. Mahler, Inequalities for Ideal Bases in Algebraic Number Fields, J. Austral. Math. Soc. 4, (1964), pp. 425–447.Google Scholar
  6. [6]
    M. Pohst u. H. Zassenhaus, An effective number geometric method of computing the fundamental units of an algebraic number field, Math. Comp., v. 31, 1977, pp. 754–770.Google Scholar
  7. [7]
    M. Pohst, P. Weiler u. H. Zassenhaus, On effective computation of fundamental units I,II, Math. Comp., v. 38, 1982, pp. 275–329.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • U. Fincke
    • 1
  • M. Pohst
    • 1
  1. 1.Mathematisches InstitutUniversität Düsseldorf4 DüsseldorfWest Germany

Personalised recommendations