Mechanical stress induced defect creation in GaP

  • G. Ferenczi
  • L. Dózsa
  • M. Somogyi
Postdeadline Contribution to Part IV
Part of the Lecture Notes in Physics book series (LNP, volume 175)


The concentration of a donor like deep level - T7 - about 0.8 eV from the conduction band has been correlated to the amount of accumulated mechanical stress in GaP p-n structures. Under forward bias stressing the initial concentration of T7 decreases. Depending on the local strain field pattern new levels appear. If compressive strain field is dominant within the p-n junction, the level created is 0.49 eV below the conduction band. If the strain field is absent two levels - 0.71 eV and 1.18 eV below the conduction band - are created. We tentatively identified the latter two levels as the two charge states Of PGa - phosphorus antisite defect. Both defects act as non-radiative recombination centres, hence responsible for the performance degredation of GaP LED's.


Forward Bias Dislocation Climb Climb Mechanism External Mechanical Stress DLTS Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.M. Petroff, O.G. Lorimor and J.M. Ralston: J. Appl. Phys. 47, 1583 (1976)Google Scholar
  2. 2.
    P.W. Hutchinson, P.S. Dobson, B. Wakefield and S.O'Hara, SolidState Electron. 21, 1413 (1978)Google Scholar
  3. 3.
    G.R. Woolhouse, B. Monemar and C.M. Serrano, Appl. Phys. Lett. 33, 94 (1978)Google Scholar
  4. 4.
    M. Iwamoto and A. Kasami, Appl. Phys. Lett. 28, 591 (1976)Google Scholar
  5. 5.
    T. Kamejima, K. Ishida and J. Matsui, Jap. J. Appl. Phys. 16, 233 (1977)Google Scholar
  6. 6.
    N. Shimano, Y. Kawai and M. Sakuta, J. Appl. Phys. 51, 1227 (1980)Google Scholar
  7. 7.
    M.J. Robertson and B. Wakefield, J. Appl. Phys. 52, 4462 (1981)Google Scholar
  8. 8.
    D.V. Lang, J. Appl. Phys. 45, 3014 (1974)Google Scholar
  9. 9.
    G. Ferenczi and J. Kiss, Acta Phys. Hung. 50, 289 (1981)Google Scholar
  10. 10.
    G. Ferenczi, P. Krispin and M. Somogyi, J. Appl. Phys. to be published (1983)Google Scholar
  11. 11.
    G. Ferenczi, IEEE Trans. on Electron. Dev. ED-28, 421 (1981)Google Scholar
  12. 12.
    M. Scheffler, S.T. Pantelides, N.O. Lipari and J. Bernholc, Phys. Rev. Lett. 47, 413 (1981)Google Scholar
  13. 13.
    U. Kaufmann, J. Schneider, R. Wörner, T.A. Kennedy and N.D. Wilsey, J. Phys. C. 14, L951 (1981)Google Scholar
  14. 14.
    K.P. O'Donell, K.M. Lee and G.D. Watkins, Solid State Commun. to be publishedGoogle Scholar
  15. 15.
    E.R. Weber, H. Ennen, U. Kaufmann, J. Windscheif, J. Schneider and T. Wosinski, J. Appl. Phys., to be publishedGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • G. Ferenczi
    • 1
  • L. Dózsa
    • 1
  • M. Somogyi
    • 1
  1. 1.Research Institute for Technical PhysicsHungary

Personalised recommendations