Une semantique pour les arbres non deterministes

  • G. Boudol
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 112)


Initial Algebra Semantic Peut Observer Nous Noterons Recursive Program Scheme Notation Suivante 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    ADJ: "Initial algebra semantics and continuous algebras", JACM 24 (1977) 68–95Google Scholar
  2. [2]
    A. Arnold & M. Nivat: "Formal computations of non-deterministic recursive schemes", MST 13 (1980) 219–236Google Scholar
  3. [3]
    A. Arnold &M. Nivat: "Algebraic semantics of non-deterministic recursive program schemes", Rapport du LITP no 78–4, Univ. Paris 7 (1978)Google Scholar
  4. [4]
    J.W. de Bakker: "Semantics and termination of non-deterministic recursive programs", Proc. of the 3rd ICALP, Edimburgh (1976) 435–477Google Scholar
  5. [5]
    G. Boudol: "Sémantique opérationnelle et algébrique des programmes récursifs non-déterministes", Thèse, Univ. Paris 7 (1980)Google Scholar
  6. [6]
    G. Boudol: "On the semantics of non-deterministic recursive programs", à paraîtreGoogle Scholar
  7. [7]
    G. Boudol: "Category-theoretic models of non-determinism", à paraîtreGoogle Scholar
  8. [8]
    J.-M. Cadiou: "Recursive definitions of partial functions and their computations", Ph. D. Thesis, Stanford (1972)Google Scholar
  9. [9]
    B. Courcelle & M. Nivat: "Algebraic families of interpretations", 17th FOCS (1976) 137–146Google Scholar
  10. [10]
    G. Cousineau: "An algebraic definition for control structures", TCS 12 (1980) 175–192Google Scholar
  11. [11]
    E.W. Dijkstra: "Guarded commands, non-determinacy and formal derivation of programs", CACM 18 (1975) 453–457Google Scholar
  12. [12]
    R.W. Floyd: "Non-deterministic algorithms", JACM 14 (1967) 636–644Google Scholar
  13. [13]
    M. Hennessy & E.A. Aschroft: "A mathematical semantics for non-deterministic typed λ-calculus", TCS 11 (1980) 227–246Google Scholar
  14. [14]
    D.J. Lehmann: "Categories for fix point semantics", 17th FOCS (1976) 122–126Google Scholar
  15. [15]
    J. Mc Carthy: "A basis for a mathematical theory of computation", in "Computer programming and formal systems" (Braffort & Hirschberg, Eds) (1963) 33–70Google Scholar
  16. [16]
    Z. Manna: "The correctness of non-deterministic programs", Artificial Intelligence 1 (1970) 1–26Google Scholar
  17. [17]
    M. Nivat: "On the interpretation of recursive polyadic program schemes", Symposia Mathematica 15, Bologna (1975) 225–281Google Scholar
  18. [18]
    M. Nivat: "Non-deterministic programs: an algebraic overview", IFIP Congress 1980Google Scholar
  19. [19]
    M. Nivat: "Chartes, arbres, programmes itératifs", Rapport du LITP no 78–28, Univ. Paris 7 (1978)Google Scholar
  20. [20]
    G. Plotkin: "A power-domain construction", SIAM J. on Computing 5 (1976) 452–487Google Scholar
  21. [21]
    B.K. Rosen: "Program equivalence and context-free grammars", 13th SWAT (1972) 7–18Google Scholar
  22. [22]
    D. Scott: "Outline of a mathematical theory of computation", Technical Monograph PRG 2, Oxford (1970)Google Scholar
  23. [23]
    D. Scott: "The lattice of flow-diagrams", Symp. on Semantics of Algorithmic Languages, Lecture Notes in Mathematics no 182 (1971) 311–366Google Scholar
  24. [24]
    M. Smyth: "Power-domains", JCSS 16 (1978) 23–36Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • G. Boudol
    • 1
  1. 1.Université Paris 7 —LITPFrance

Personalised recommendations