On the definition of lambda-calculus models

  • G. Berry
Part of the Lecture Notes in Computer Science book series (LNCS, volume 107)


Most authors use a classical Tarski-like definition of lambda-calculus models. However in earlier papers we constructed semantic "models" which do not obey this definition. We propose a new definition of models which is strictly more general than the usual one, takes care of all known cases, but is slightly more complicated. We illustrate the need for this definition by various examples, and compare it to the usual definition.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H.P. BARENDREGT, "The Type-free Lambda-Calculus", Handbook of Mathematical Logic, North-Holland, 1977, pp. 1091–1132.Google Scholar
  2. [2]
    G. BERRY, "Stable Models of Typed Lambda-Calculi", Proc. 5th Int. Coll. "Automata, Languages and Programming", Udine, Italy, 1978. Springer-Verlag LNCS n. 62, pp. 72–90.Google Scholar
  3. [3]
    G.BERRY, "Modèles Complètement Adéquats et Stables des Lambda-Calculs Typés", Thèse de Doctorat d'Etat, Université Paris VII, march 1979.Google Scholar
  4. [4]
    G. BERRY, P.L. CURIEN, "Sequential Algorithms on Concrete Data Structures", submitted to publication, nov. 1979.Google Scholar
  5. [5]
    G. BERRY, "Some Syntactic and Categorical Constructions of Lambda Calculus Models", INRIA report to appear.Google Scholar
  6. [6]
    R. HINDLEY, G. LONGO, "Lambda-Calculus Models and Extensionality" Zeitschrift für Mathematische Logik 26, (1980), pp. 289–310.Google Scholar
  7. [7]
    J. LAMBECK, "Deductive Systems and Categories: 3. Cartesian Closed Categories, Intuitionistic Propositional Calculus and Combinatory Logic", Proc. Dalhousie Conference on Toposes, Algebraic Geometry and Logic, Springer-Verlag Lecture Notes in Mathematics, n. 274, 1971, pp. 57–82.Google Scholar
  8. [8]
    J.J. LEVY, "An Algebraic Interpretation of the λβκ-Calculus and an Application of a Labelled Lambda-Calculus", Theoretical Computer Science, vol. 2, n. 1, 1976.Google Scholar
  9. [9]
    J.J. LEVY, "Réductions Correctes et Optimales dans le Lambda-Calcul", Thèse de Doctorat d'Etat, Université Paris VII, 1978.Google Scholar
  10. [10]
    J. Mc CARTHY, "A new Eval Function", M.I.T. Artificial Intelligence memo 34, 1962.Google Scholar
  11. [11]
    A.R. MEYER, "What is a Lambda-Calculus Model ?", Laboratory for Computer Science Report MIT/LCS/TM-171, M.I.T., August 1980.Google Scholar
  12. [12]
    R. MILNER, "Models of LCF", Comp. Sci. Dept. Memo AIM-186/CS-332, Stanford University, 1973.Google Scholar
  13. [13]
    G.D. PLOTKIN, "The Lambda-Calculus is ω-incomplete", J. Symbolic Logic, vol. 39, pp. 313–317.Google Scholar
  14. [14]
    G.D. PLOTKIN, "Tω as a Universal Domain", Tech. Rep. 38, Dept. of Artificial Intelligence, Univ. of Edimburgh, 1977.Google Scholar
  15. [15]
    D. SCOTT, "Continuous Lattices", Proc. 1971 Dalhousie Conf. on Toposes, Algebraic Geometry and Logic, Springer-Verlag Lecture Notes in Mathematics No 274, 1971, pp. 97–136.Google Scholar
  16. [16]
    D. SCOTT, "Data Types as Lattices", SIAM Journal on Computing vol. 5, n. 3, sept 1976, pp. 522–587.CrossRefGoogle Scholar
  17. [17]
    M. SMYTH, G. PLOTKIN, "The Category-Theoretic Solution of Recursive Domain Equations", Proc. 18th Symp. on Foundations of Computer Science, Providence, R.I., 1977.Google Scholar
  18. [18]
    C.P. WADSWORTH, "The Relation between Computational and Denotational Properties for Scott's D Model of the Lambda-Calculus", SIAM Journal on Computing, vol. 5, n. 3, sept 1976, pp. 488–522.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • G. Berry
    • 1
  1. 1.Centre de Mathématiques AppliquéesEcole Nationale Supérieure des Mines de Paris Sophia AntipolisValbonneFrance

Personalised recommendations