An algebraic extension of the Chomsky — hierarchy

Part of the Lecture Notes in Computer Science book series (LNCS, volume 74)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. [1]
    BOASSON, B., COURCELLE, B., NIVAT, M., A new complexity measure for languages, Proc. conference on Theoretical Computer Science, University of Waterloo, 1977.Google Scholar
  2. [2]
    DAMM, W., Languages defined by higher type program schemes, Proc. 4th international colloquium on Automata, Languages, and Programming, Lecture Notes in Computer Science 52 (1977),pp. 164–179, Springer Verlag.Google Scholar
  3. [3]
    DAMM, W., The IO and OI hierarchies, Schriften zur Informatik und Angewandten Mathematik, 41, RWTH Aachen (1978).Google Scholar
  4. [4]
    DAMM, W., Dissertation at the RWTH Aachen (1979), to appear.Google Scholar
  5. [5]
    DAMM, W., FEHR, E., On the Power of Self-Application and Higher Type Recursion, Proc. 5th international colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science 62 (1978), Springer Verlag, pp. 177–191.Google Scholar
  6. [6]
    DAMM, W., FEHR, E., INDERMARK, K., Higher type recursion and self-application as control structures, Formal Description of Programming Concepts, ed. E. Neuhold, North-Holland Publishing Company (1978), pp. 461–487.Google Scholar
  7. [7]
    ENGELFRIET, J., SCHMIDT E.M., IO and OI,part I and II, Journal of Computer and System Sciences Vol. 15, 3 (1977), pp. 328–352, and Vol. 16, 1 (1978), pp. 67–99.Google Scholar
  8. [8]
    FEHR, E., On typed and untyped λ-schemes, Schriften zur Informatik und Angewandten Mathematik 44, RWTH Aachen (1978).Google Scholar
  9. [9]
    FISCHER, M.J., Grammars with macro-like productions, Proc. 9th IEEE conference on Switching and Automata Theory (1968), pp. 131–142.Google Scholar
  10. [10]
    GOGUEN, J.A., THATCHER, J.W., WAGNER, E.G., WRIGHT, J.B., Initial Algebra Semantics and Coninuous Algebras, JACM,Vol. 24, 1 (1977), pp. 68–95.CrossRefGoogle Scholar
  11. [11]
    INDERMARK, K., Schemes with recursion on higher types, Proc. 5th conference on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science 45 (1976), Springer Verlag, pp. 352–358.Google Scholar
  12. [12]
    MASLOV, A.N., The Hierarchy of Indexed Languages of an Arbitrary Level, Soviet. Math. Dokl., Vol. 15, 14 (1974), pp. 1170–1174.Google Scholar
  13. [13]
    NIVAT, M., On the interpretation of recursive program schemes, Atti del convegno di informatica teorica, Symposia Mathematica, Vol. 15 (1975), Rome, pp. 256–281.Google Scholar
  14. [14]
    SCHMIDT, E.M., Succintness of Description of Context-free, Regular, and Finite Languages, Datalogisk Afdelning Report, DAIMI PB-84, Aarhus University (1978).Google Scholar
  15. [15]
    STEYAERT, J.M., Evaluation des Index Rationnels de quelques Familles de Langages, IRIA-report No. 261 (1977).Google Scholar
  16. [16]
    WAND, M., A Concrete Approach to Abstract Recursive Definitions, Automata, Languages, and Programming, ed. M. Nivat, North-Holland Publishing Company (1973), pp. 331–341.Google Scholar
  17. [17]
    WAND, M., An Algebraic Formulation of the Chomsky-Hierarchy, Category Theory Applied to Computation and Control, Lecture Notes in Computer Science 25 (1975), pp. 209–213.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • W. Damm
    • 1
  1. 1.Lehrstuhl für Informatik II, RWTH AachenGermany

Personalised recommendations