International Symposium on Symbolic and Algebraic Manipulation

EUROSAM 1979: Symbolic and Algebraic Computation pp 153-163 | Cite as

An algebraic form of a solution of a system of linear differential equations with constant coefficients

  • Evelyne Tournier
5. Differential Equations
Part of the Lecture Notes in Computer Science book series (LNCS, volume 72)

Abstract

In this paper we describe an algorithm for finding an algebraic form for a solution of a system of linear differential equations with constant coefficients, using the properties of elementary divisors of a polynomial matrix.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Arkitas, A.G. "Vincent's theorem in algebraic manipulation" Ph.D. North Carolina State University at Raleigh (1978).Google Scholar
  2. [2]
    Gantmacher, F.R. "The Theory of Matrices" (Vol. 182) Chelsea Publishing Company. (1959).Google Scholar
  3. [3]
    Gastinel, N. "Analyse Numérique" Hermann (1964).Google Scholar
  4. [4]
    Golden, T.F. "MACSYMA's symbolic ordinary differential equation solver" proceeding of the 1977 MACSYMA User's Conference.Google Scholar
  5. [5]
    Hearn, A.C. "REDUCE-2 User's Manual" 2nd Edition., University of Utah Computational Physics Group Report No. UCP — 19 (March 1973).Google Scholar
  6. [6]
    Lafferty, E.L. "Power series solutions of ordinary differential equations in MACSYMA User's conference."Google Scholar
  7. [7]
    Norman, A. Private Communication.Google Scholar
  8. [8]
    Schmidt, P. "Automatic solution of differential equation of first order and first degree" ACM Symposium on Symbolic and Algebraic Computation, 1976.Google Scholar
  9. [9]
    Vincent, M. "Sur La Résolution des Equations Numériques" Journal de Mathématiques Pures et Appliquées. Vol 1 (1836).Google Scholar
  10. [10]
    Watanabe, S. "Differential Equations Package in REDUCE-2" Ricken Symposium on Symbolic and Algebraic Computations by Computer (Nov. 1978).Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Evelyne Tournier
    • 1
  1. 1.Department of Computer ScienceUniversity of UtahSalt Lake City
  2. 2.Mathématiques appiliquées-informatiqueUniversité Scientifique et Médicale de GrenobleGrenoble-CedexFrance

Personalised recommendations