Recursive ω-languages

  • K. Wagner
  • L. Staiger
Section C Computability, Decidability & Arithmetic Complexity
Part of the Lecture Notes in Computer Science book series (LNCS, volume 56)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Büchi, J.R., On a decision method in restricted secondorder arithmetic, Proc. Int. Congr. on Logic, Meth. and Phil. of Sc. 1960, Stanford Univ. Press, Stanford, CaliforniaGoogle Scholar
  2. 2.
    McNaughton, R., Testing and generating infinite sequences by a finite automaton, Inf. and Control 9 (1966), 521–530Google Scholar
  3. 3.
    Landweber, L.H., Decision problems for ω-automata. Math. Syst. Th. 3/4 (1969), 376–384Google Scholar
  4. 4.
    Staiger, L., Wagner, K., Automatentheoretische und automaten-freie Charakterisierungen topologischer Klassen regulärer Folgenmengen, EIK 10 (1970) 7, 379–392Google Scholar
  5. 5.
    Linna, M., On ω-words and ω-computations, Ann. Univ. Turku, Ser. A 168 (1975)Google Scholar
  6. 6.
    Rogers, H. jr., Theory of recursive functions and Effective Computability, McGraw-Hill New York 1967Google Scholar
  7. 7.
    Wagner, K., Arithmetische Operatoren, Zeitschr. Math. Logik und Grundl. d. Math. 22 (1976), 553–570Google Scholar
  8. 8.
    Staiger, L., Wagner, K., Rekursive Folgenmengen, 1977, in preparation.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • K. Wagner
    • 1
  • L. Staiger
    • 1
  1. 1.Section of MathematicsFriedrich Schiller UniversityJenaGDR

Personalised recommendations