The bodnarchuk metric space of languages and the topology of the learning space

  • Victor Vianu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 53)


Topological Property Normed Linear Space Metrical Space Free Monoid Learning Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bodnarchuk, V.G., The metrical space of events. Kibernetika Kiev, 1 (1965), 24–27.Google Scholar
  2. 2.
    Calude, C., Asupra distantelor contextuale in lingvistica matematica (On contextual distances in mathematical linguistics).Studii si cercetari matematice, 1 (1976).Google Scholar
  3. 3.
    Dinca, A., Distante contextuale in lingvistica algebrica (Contextual distances in algebraic linguistics). Studii si cercetari matematice, 2 (1973).Google Scholar
  4. 4.
    Marcus, S., Introduction mathématique à la linguistique structurale. Dunod, Paris, 1967.Google Scholar
  5. 5.
    Yoshinori Uesaka, Teruaki Aizawa, Terumasa Ebara, Kazuhiko Ozeki, A theory of learnability. Kibernetik 13 (1973), 123–131.Google Scholar
  6. 6.
    Aizawa, T., Ebara, T., Ozeki, K., Uesaka, Y., Sur l'espace topologique lié à une nouvelle théorie de l'apprentissage. Kibernetik 14 (1974), 141–149.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • Victor Vianu
    • 1
  1. 1.Faculty of MathematicsUniversity of BucharestBucharestRomania

Personalised recommendations