Quantifier elimination for real closed fields by cylindrical algebraic decompostion

  • George E. Collins
Donnerstagvormittag Hauptvortrag
Part of the Lecture Notes in Computer Science book series (LNCS, volume 33)


Real Root Atomic Formula Real Zero Positive Degree Quantifier Elimination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Brown, W.S., On Euclid's Algorithm and the Computation of Polynomial Greatest Common Divisors, J. ACM, vol. 18, no. 4 (Oct. 1971) pp. 478–504.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Brown, W.S., and Traub, J.F., On Euclid's Algorithm and the Theory of Subresultants, J. ACM, vol. 18, no. 4 (Oct. 1971), pp. 505–514.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cohen, P.J., Decision Procedures for Real and p-adic Fields, Comm. Pure and Applied Math., vol. XXII, no. 2 (March 1969), pp. 131–151.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Collins, G.E., Subresultants and Reduced Polynomial Remainder Sequences, J. ACM, vol. 14, no. 1, (Jan. 1967), pp. 128–142.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Collins, G.E., The Calculation of Multivariate Polynomial Resultants, J. ACM, vol. 18, no. 4 (Oct. 1971), pp. 515–532.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Collins, G.E., Computer Algebra of Polynomials and Rational Functions, Am. Math. Monthly, vol. 80, no. 7 (Aug.-Sept. 1973), pp. 725–755.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Collins, G.E., Efficient Quantifier Elimination for Elementary Algebra (abstract), Symposium on Complexity of Sequential and Parallel Numerical Algorithms, Carnegie-Mellon University, May 1973.Google Scholar
  8. 8.
    Collins, G.E., Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition — Preliminary Report, Proceedings of EUROSAM 74, STGSAM Bulletin, Vol. 8, no. 3 (August 1974), pp. 80–90.CrossRefGoogle Scholar
  9. 9.
    Fischer, M.J., and Rabin, M.O., Super-Exponential Complexity of Presburger Arithmetic, M.I.T. MAC Tech. Memo. 43, Feb. 1974.Google Scholar
  10. 10.
    Goldhaber, J.K., and Ehrlich, G., Algebra, MacMillan Co., 1970.Google Scholar
  11. 11.
    Heindel, L.E., Integer Arithmetic Algorithms for Polynomial Real Zero Determination, J. ACM, vo. 18, no. 4 (Oct. 1971), pp. 533–548.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Loos, R., G.K., A Constructive Approach to Algebraic Numbers, SIAM Journal on Computing, to appear.Google Scholar
  13. 13.
    Marden, M., The Geometry of the Zeros of a Polynomial in a Complex Variable, Am. Math. Soc., Providence, 1949.Google Scholar
  14. 14.
    Musser, D.R., Algorithms for Polynomial Factorization (Ph.D. Thesis), Univ. of Wisconsin Computer Sciences Dept. Tech. Report No. 134, Sept. 1971.Google Scholar
  15. 15.
    Musser, D.R., Multivariate Polynomial Factorization, J.ACM., Vol. 22, No. 2 (April 1975), pp. 291–308.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Rubald, C.M., Algorithms for Polynomials over a Real Algebraic Number Field (Ph.D. Thesis), Computer Sciences Dept. Tech. Report No. 206, Jan. 1974.Google Scholar
  17. 17.
    Seidenberg, A., A New Decision Method for Elementary Algebra, Annals of Math., vol. 60, no. 2 (Sept. 1954), pp. 365–374.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Tarski, A., A Decision Method for Elementary Algebra and Geometry, second ed., rev., Univ. of California Press, Berkeley, 1951.zbMATHGoogle Scholar
  19. 19.
    van der Waerden, B.L., Modern Algebra, vol. I, F. Ungar Co., New York, 1953.Google Scholar
  20. 20.
    Böge, W., private communication, June 1973Google Scholar
  21. 21.
    Holthusen, C., Vereinfachungen für Tarski's Entscheidungsverfahren der Elementaren Reelen Algebra (Diplomarbeit, University of Heidelberg), January 1974.Google Scholar
  22. 22.
    Collins, G.E., and E. Horowitz, The Minimum Root Separation of a Polynomial, Math. of Comp., Vol. 28, No. 126, (April 1974), pp. 589–597.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Mignotte, M., An Inequality About Factors of Polynomials, Math. of Comp., Vol. 28, No. 128 (October 1974), pp. 1153–1157.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Knuth, D.E., The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, Addison-Wesley, Reading, 1969.zbMATHGoogle Scholar
  25. 25.
    Schönhage, A., and V. Strassen, Schnelle Multiplikation großer Zahlen, Computing, Vol. 7, pp. 281–292.Google Scholar
  26. 26.
    Ferrante, J., and C. Rackoff, A Decision Procedure for the First Order Theory of Real Addition with Order, SIAM Journal on Computing, Vol. 4, No. 1 (March 1975), pp. 69–76.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • George E. Collins
    • 1
    • 2
  1. 1.University of WisconsinMadison
  2. 2.University of KaiserslauternGermany

Personalised recommendations