The virus-immunity ecosystem

  • P. C. Doherty
  • S. J. Turner
Conference paper


The ecology of pathogenic viruses can be considered both in the context of survival in the macro-environments of nature, the theme pursued generally by epidemiologists, and in the micro-environments of the infected host. The long-lived, complex, higher vertebrates have evolved specialized, adaptive immune systems designed to minimise the consequences of such parasitism. Through evolutionary time, the differential selective pressures exerted variously by the need for virus and host survival have shaped both the “one-host” and vertebrate immunity. With the development of vaccines to protect us from many of our most familiar parasites, the most dangerous pathogens threatening us now tend to be those “emerging”, or adventitious, infectious age sporadically enter human populations from avian or other wild-life reservoirs. Such incursions must, of course, have been happening through the millenia, and are likely to have led to the extraordinary diversity of recognition molecules, the breadth in effector functions, and the persistent memory that distinguishes the vertebrate, adaptive immune system from the innate response mechanisms that operate more widely through animal biology. Both are important to contemporary humans and, particularly in the period immediately following infection, we still rely heavily on an immediate response capacity, elements of which are shared with much simpler, and more primitive organisms. Perhaps we will now move forward to develop useful therapies that exploit, or mimic, such responses. At this stage, however, most of our hopes for minimizing the threat posed by viruses still focus on the manipulation of the more precisely targeted, adaptive immune system.


Respiratory Syncytial Virus Curr Opin Immunol Venezuelan Equine Encephalitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ahmadzadeh M, Farber DL (2002) Functional plasticity of an antigen-specific memory CD4 T cell population. Proc Natl Acad Sci USA 99: 11802–11807PubMedCrossRefGoogle Scholar
  2. 2.
    Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI, McMichael AJ, Davis MM (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274: 94–96PubMedCrossRefGoogle Scholar
  3. 3.
    Amara RR, Smith JM, Staprans SI, Montefiori DC, Villinger F, Altman JD, O’Neil SP, Kozyr NL, Xu Y, Wyatt LS, Earl PL, Herndon JG, McNicholl JM, McClure HM, Moss B, Robinson HL (2002) Critical role for Env as well as Gag-Pol in control of a simian-human immunodeficiency virus 89.6P challenge by a DNA prime/recombinant modified vaccinia virus Ankara vaccine. J Virol 76: 6138–6146PubMedCrossRefGoogle Scholar
  4. 4.
    Andreansky S, Liu H, Adler H, Koszinowski UH, Efstathiou S, Doherty PC (2004) The limits of protection by “quomemory”quo T cells in Ig-/-mice persistently infected with a {gamma}-herpesvirus. Proc Natl Acad Sci USA 101: 2017–2022PubMedCrossRefGoogle Scholar
  5. 5.
    Arnold PY, La Gruta NL, Miller T, Vignali KM, Adams PS, Woodland DL, Vignali DA (2002) The majority of immunogenic epitopes generate CD4+T cells that are dependent on MHC class II-bound peptide-flanking residues. J Immunol 169: 739–749PubMedGoogle Scholar
  6. 6.
    Arnold PY, Vignali KM, Miller TB, La Gruta NL, Cauley LS, Haynes L, Scott Adams P, Swain SL, Woodland DL, Vignali DA (2002) Reliable generation and use of MHC class II:gamma2aFc multimers for the identification of antigen-specific CD4(+) T cells. J Immunol Meth 271: 137–151CrossRefGoogle Scholar
  7. 7.
    Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P (1999) A direct estimate of the human alphabeta T cell receptor diversity. Science 286: 958–961PubMedCrossRefGoogle Scholar
  8. 8.
    Barbato G, Bianchi E, Ingallinella P, Hurni WH, Miller MD, Ciliberto G, Cortese R, Bazzo R, Shiver JW, Pessi A (2003) Structural analysis of the epitope of the anti-HIV antibody 2F5 sheds light into its mechanism of neutralization and HIV fusion. J Mol Biol 330: 1101–1115PubMedCrossRefGoogle Scholar
  9. 9.
    Barber DL, Wherry EJ, Ahmed R (2003) Cutting edge: rapid in vivo killing by memory CD8 T cells. J Immunol 171: 27–31PubMedGoogle Scholar
  10. 10.
    Barouch DH, Santra S, Schmitz JE, Kuroda MJ, Fu TM, Wagner W, Bilska M, Craiu A, Zheng XX, Krivulka GR, Beaudry K, Lifton MA, Nickerson CE, Trigona WL, Punt K, Freed DC, Guan L, Dubey S, Casimiro D, Simon A, Davies ME, Chastain M, Strom TB, Gelman RS, Montefiori DC, Lewis MG, Emini EA, Shiver JW, Letvin NL (2000) Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination. Science 290: 486–492PubMedCrossRefGoogle Scholar
  11. 11.
    Barouch DH, Kunstman J, Kuroda MJ, Schmitz JE, Santra S, Peyerl FW, Krivulka GR, Beaudry K, Lifton MA, Gorgone DA, Montefiori DC, Lewis MG, Wolinsky SM, Letvin NL (2002) Eventual AIDS vaccine failure in a rhesus monkey by viral escape from cytotoxic T lymphocytes. Nature 415: 335–339PubMedCrossRefGoogle Scholar
  12. 12.
    Belz GT, Xie W, Doherty PC (2001) Diversity of epitope and cytokine profiles for primary and secondary influenza a virus-specific CD8+ T cell responses. J Immunol 166: 4627–4633PubMedGoogle Scholar
  13. 13.
    Belz GT, Wodarz D, Diaz G, Nowak MA, Doherty PC (2002) Compromised influenza virus-specific CD8(+)-T-cell memory in CD4(+)-T-cell-deficient mice. J Virol 76: 12388–12393PubMedCrossRefGoogle Scholar
  14. 14.
    Belz GT, Liu H, Andreansky S, Doherty PC, Stevenson PG (2003) Absence of a functional defect in CD8+ T cells during primary murine gammaherpesvirus-68 infection of I-A(b-/-) mice. J Gen Virol 84: 337–341PubMedCrossRefGoogle Scholar
  15. 15.
    Bennett SR, Carbone FR, Karamalis F, Miller JF, Heath WR (1997) Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J Exp Med 186: 65–70PubMedCrossRefGoogle Scholar
  16. 16.
    Bennett SR, Falta MT, Bill J, Kotzin BL (2003) Antigen-specific T cells in rheumatoid arthritis. Curr Rheumatol Rep 5: 255–263PubMedGoogle Scholar
  17. 17.
    Berard M, Brandt K, Bulfone-Paus S, Tough DF (2003) IL-15 promotes the survival of naive and memory phenotype CD8+ T cells. J Immunol 170: 5018–5026PubMedGoogle Scholar
  18. 18.
    Binder GK, Griffin DE (2001) Interferon-gamma-mediated site-specific clearance of alphavirus from CNS neurons. Science 293: 303–306PubMedCrossRefGoogle Scholar
  19. 19.
    Binder GK, Griffin DE (2003) Immune-mediated clearance of virus from the central nervous system. Microbes Infect 5: 439–448PubMedCrossRefGoogle Scholar
  20. 20.
    Blattman JN, Sourdive DJ, Murali-Krishna K, Ahmed R, Altman JD (2000) Evolution of the T cell repertoire during primary, memory, and recall responses to viral infection. J Immunol 165: 6081–6090PubMedGoogle Scholar
  21. 21.
    Blattman JN, Antia R, Sourdive DJ, Wang X, Kaech SM, Murali-Krishna K, Altman JD, Ahmed R (2002) Estimating the precursor frequency of naive antigen-specific CD8 T cells. J Exp Med 195: 657–664PubMedCrossRefGoogle Scholar
  22. 22.
    Brown SA, Stambas J, Zhan X, Slobod KS, Coleclough C, Zirkel A, Surman S, White SW, Doherty PC, Hurwitz JL (2003) Clustering of Th cell epitopes on exposed regions of HIV envelope despite defects in antibody activity. J Immunol 171: 4140–4148PubMedGoogle Scholar
  23. 23.
    Burton DR, Desrosiers RC, Doms RW, Koff WC, Kwong PD, Moore JP, Nabel GJ, Sodroski J, Wilson IA, Wyatt RT (2004) HIV vaccine design and the neutralizing antibody problem. Nat Immunol 5: 233–236PubMedCrossRefGoogle Scholar
  24. 24.
    Cabarrocas J, Bauer J, Piaggio E, Liblau R, Lassmann H (2003) Effective and selective immune surveillance of the brain by MHC class I-restricted cytotoxic T lymphocytes. Eur J Immunol 33: 1174–1182PubMedCrossRefGoogle Scholar
  25. 25.
    Cardin RD, Brooks JW, Sarawar SR, Doherty PC (1996) Progressive loss of CD8+ T cell-mediated control of a gamma-herpesvirus in the absence of CD4+ T cells. J Exp Med 184: 863–871PubMedCrossRefGoogle Scholar
  26. 26.
    Cassese G, Arce S, Hauser AE, Lehnert K, Moewes B, Mostarac M, Muehlinghaus G, Szyska M, Radbruch A, Manz RA (2003) Plasma cell survival is mediated by synergistic effects of cytokines and adhesion-dependent signals. J Immunol 171: 1684–1690PubMedGoogle Scholar
  27. 27.
    Castrucci MR, Hou S, Doherty PC, Kawaoka Y (1994) Protection against lethal lymphocytic choriomeningitis virus (LCMV) infection by immunization of mice with an influenza virus containing an LCMV epitope recognized by cytotoxic T lymphocytes. J Virol 68: 3486–3490PubMedGoogle Scholar
  28. 28.
    Christensen JP, Cardin RD, Branum KC, Doherty PC (1999) CD4(+) T cell-mediated control of a gamma-herpesvirus in B cell-deficient mice is mediated by IFN-gamma. Proc Natl Acad Sci USA 96: 5135–5140PubMedCrossRefGoogle Scholar
  29. 29.
    Christensen JP, Doherty PC, Branum KC, Riberdy JM (2000) Profound protection against respiratory challenge with a lethal H7N7 influenza A virus by increasing the magnitude of CD8(+) T-cell memory. J Virol 74: 11690–11696PubMedCrossRefGoogle Scholar
  30. 30.
    Clark R, Griffiths GM (2003) Lytic granules, secretory lysosomes and disease. Curr Opin Immunol 15: 516–521PubMedCrossRefGoogle Scholar
  31. 31.
    Crotty S, Felgner P, Davies H, Glidewell J, Villarreal L, Ahmed R (2003) Cutting edge: long-term B cell memory in humans after smallpox vaccination. J Immunol 171: 4969–4973PubMedGoogle Scholar
  32. 32.
    Doherty PC, Reid HW, Smith W (1971) Louping-ill encephalomyelitis in the sheep. IV. Nature of the perivascular inflammatory reaction. J Comp Pathol 81: 545–549PubMedCrossRefGoogle Scholar
  33. 33.
    Doherty PC, Zinkernagel RM (1974) T-cell-mediated immunopathology in viral infections. Transplant Rev 19: 89–120PubMedGoogle Scholar
  34. 34.
    Doherty PC, Zinkernagel RM (1975) A biological role for the major histocompatibility antigens. Lancet 1: 1406–1409PubMedCrossRefGoogle Scholar
  35. 35.
    Doherty PC, Allan W, Boyle DB, Coupar BE, Andrew ME (1989) Recombinant vaccinia viruses and the development of immunization strategies using influenza virus. J Infect Dis 159: 1119–1122PubMedGoogle Scholar
  36. 36.
    Doherty PC (1993) Virus infections in mice with targeted gene disruptions. Curr Opin Immunol 5: 479–483PubMedCrossRefGoogle Scholar
  37. 37.
    Doherty PC, Hou S, Southern PJ (1993) Lymphocytic choriomeningitis virus induces a chronic wasting disease in mice lacking class I major histocompatibility complex glycoproteins. J Neuroimmunol 46: 11–17PubMedCrossRefGoogle Scholar
  38. 38.
    Doherty PC, Topham DJ, Tripp RA (1996) Establishment and persistence of virus-specific CD4+ and CD8+ T cell memory. Immunol Rev 150: 23–44PubMedCrossRefGoogle Scholar
  39. 39.
    Doherty PC, Topham DJ, Tripp RA, Cardin RD, Brooks JW, Stevenson PG (1997) Effector CD4+ and CD8+ T-cell mechanisms in the control of respiratory virus infections. Immunol Rev 159: 105–117PubMedCrossRefGoogle Scholar
  40. 40.
    Doherty PC, Christensen JP (2000) Accessing complexity: the dynamics of virus-specific T cell responses. Annu Rev Immunol 18: 561–592PubMedCrossRefGoogle Scholar
  41. 41.
    Doherty RL, Carley JG, Best JC (1972) Isolation of Ross River virus from man. Med J Aust 1: 1083–1084PubMedGoogle Scholar
  42. 42.
    Edwards BM, Barash SC, Main SH, Choi GH, Minter R, Ullrich S, Williams E, Du Fou L, Wilton J, Albert VR, Ruben SM, Vaughan TJ (2003) The remarkable flexibility of the human antibody repertoire; isolation of over one thousand different antibodies to a single protein, BLyS. J Mol Biol 334: 103–118PubMedCrossRefGoogle Scholar
  43. 43.
    Ennis FA, Cruz J, Jameson J, Klein M, Burt D, Thipphawong J (1999) Augmentation of human influenza A virus-specific cytotoxic T lymphocyte memory by influenza vaccine and adjuvanted carriers (ISCOMS). Virology 259: 256–261PubMedCrossRefGoogle Scholar
  44. 44.
    Fagraeus A (1958) Cellular reaction in antibody formation. Acta Haematol 20: 1–8PubMedCrossRefGoogle Scholar
  45. 45.
    Faroudi M, Utzny C, Salio M, Cerundolo V, Guiraud M, Muller S, Valitutti S (2003) Lytic versus stimulatory synapse in cytotoxic T lymphocyte/target cell interaction: manifestation of a dual activation threshold. Proc Natl Acad Sci USA 100: 14145–14150PubMedCrossRefGoogle Scholar
  46. 46.
    Ferguson NM, Galvani AP, Bush RM (2003) Ecological and immunological determinants of influenza evolution. Nature 422: 428–433PubMedCrossRefGoogle Scholar
  47. 47.
    Flynn KJ, Belz GT, Altman JD, Ahmed R, Woodland DL, Doherty PC (1998) Virus-specific CD8+ T cells in primary and secondary influenza pneumonia. Immunity 8: 683–691PubMedCrossRefGoogle Scholar
  48. 48.
    Flynn KJ, Riberdy JM, Christensen JP, Altman JD, Doherty PC (1999) In vivo proliferation of naive and memory influenza-specific CD8(+) T cells. Proc Natl Acad Sci USA 96: 8597–8602PubMedCrossRefGoogle Scholar
  49. 49.
    Gewurz BE, Gaudet R, Tortorella D, Wang EW, Ploegh HL (2001) Virus subversion of immunity: a structural perspective. Curr Opin Immunol 13: 442–450PubMedCrossRefGoogle Scholar
  50. 50.
    Graham MB, Dalton DK, Giltinan D, Braciale VL, Stewart TA, Braciale TJ (1993) Response to influenza infection in mice with a targeted disruption in the interferon gamma gene. J Exp Med 178: 1725–1732PubMedCrossRefGoogle Scholar
  51. 51.
    Graham MB, Braciale TJ (1997) Resistance to and recovery from lethal influenza virus infection in B lymphocyte-deficient mice. J Exp Med 186: 2063–2068PubMedCrossRefGoogle Scholar
  52. 52.
    Griffin D, Levine B, Tyor W, Ubol S, Despres P (1997) The role of antibody in recovery from alphavirus encephalitis. Immunol Rev 159: 155–161PubMedCrossRefGoogle Scholar
  53. 53.
    Guidotti LG, Borrow P, Brown A, McClary H, Koch R, Chisari FV (1999) Noncytopathic clearance of lymphocytic choriomeningitis virus from the hepatocyte. J Exp Med 189: 1555–1564PubMedCrossRefGoogle Scholar
  54. 54.
    Hahn YS (2003) Subversion of immune responses by hepatitis C virus: immunomodulatory strategies beyond evasion? Curr Opin Immunol 15: 443–449PubMedCrossRefGoogle Scholar
  55. 55.
    Halstead SB (2003) Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res 60: 421–467PubMedCrossRefGoogle Scholar
  56. 56.
    Hammarlund E, Lewis MW, Hansen SG, Strelow LI, Nelson JA, Sexton GJ, Hanifin JM, Slifka MK (2003) Duration of antiviral immunity after smallpox vaccination. Nat Med 9: 1131–1137PubMedCrossRefGoogle Scholar
  57. 57.
    Hathcock KS, Kaech SM, Ahmed R, Hodes RJ (2003) Induction of telomerase activity and maintenance of telomere length in virus-specific effector and memory CD8+ T cells. J Immunol 170: 147–152PubMedGoogle Scholar
  58. 58.
    Homann D, Teyton L, Oldstone MB (2001) Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory. Nat Med 7: 913–919PubMedCrossRefGoogle Scholar
  59. 59.
    Hou S, Hyland L, Ryan KW, Portner A, Doherty PC (1994) Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature 369: 652–654PubMedCrossRefGoogle Scholar
  60. 60.
    Hyland L, Sangster M, Sealy R, Coleclough C (1994) Respiratory virus infection of mice provokes a permanent humoral immune response. J Virol 68: 6083–6086PubMedGoogle Scholar
  61. 61.
    Jameson J, Cruz J, Terajima M, Ennis FA (1999) Human CD8+ and CD4+ T lymphocyte memory to influenza A viruses of swine and avian species. J Immunol 162: 7578–7583PubMedGoogle Scholar
  62. 62.
    Johnson BJ, Costelloe EO, Fitzpatrick DR, Haanen JB, Schumacher TN, Brown LE, Kelso A (2003) Single-cell perforin and granzyme expression reveals the anatomical localization of effector CD8+ T cells in influenza virus-infected mice. Proc Natl Acad Sci USA 100: 2657–2662PubMedCrossRefGoogle Scholar
  63. 63.
    Johnson WE, Desrosiers RC (2002) Viral persistance: HIV’s strategies of immune system evasion. Annu Rev Med 53: 499–518PubMedCrossRefGoogle Scholar
  64. 64.
    Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R (2003) Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol 4: 1191–1198PubMedCrossRefGoogle Scholar
  65. 65.
    Kapasi ZF, Murali-Krishna K, McRae ML, Ahmed R (2002) Defective generation but normal maintenance of memory T cells in old mice. Eur J Immunol 32: 1567–1573PubMedCrossRefGoogle Scholar
  66. 66.
    Karlsson AC, Martin JN, Younger SR, Bredt BM, Epling L, Ronquillo R, Varma A, Deeks SG, McCune JM, Nixon DF, Sinclair E (2003) Comparison of the ELISPOT and cytokine flow cytometry assays for the enumeration of antigen-specific T cells. J Immunol Meth 283: 141–153CrossRefGoogle Scholar
  67. 67.
    Kaufmann SH, Doherty PC (1997) Immunity to infection. Curr Opin Immunol 9: 453–455PubMedCrossRefGoogle Scholar
  68. 68.
    Kaverin NV, Rudneva IA, Ilyushina NA, Varich NL, Lipatov AS, Smirnov YA, Govorkova EA, Gitelman AK, Lvov DK, Webster RG (2002) Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants. J Gen Virol 83: 2497–2505PubMedGoogle Scholar
  69. 69.
    Klein G (1994) Epstein-Barr virus strategy in normal and neoplastic B cells. Cell 77: 791–793PubMedCrossRefGoogle Scholar
  70. 70.
    Koch M, Pancera M, Kwong PD, Kolchinsky P, Grundner C, Wang L, Hendrickson WA, Sodroski J, Wyatt R (2003) Structure-based, targeted deglycosylation of HIV-1 gp120 and effects on neutralization sensitivity and antibody recognition. Virology 313: 387–400PubMedCrossRefGoogle Scholar
  71. 71.
    Krmpotic A, Busch DH, Bubic I, Gebhardt F, Hengel H, Hasan M, Scalzo AA, Koszinowski UH, Jonjic S (2002) MCMV glycoprotein gp40 confers virus resistance to CD8+ T cells and NK cells in vivo. Nat Immunol 3: 529–535PubMedCrossRefGoogle Scholar
  72. 72.
    Lehner T (2003) Innate and adaptive mucosal immunity in protection against HIV infection. Vaccine 21[Suppl] 2: 68–76CrossRefGoogle Scholar
  73. 73.
    Liblau RS, Wong FS, Mars LT, Santamaria P (2002) Autoreactive CD8 T cells in organspecific autoimmunity: emerging targets for therapeutic intervention. Immunity 17: 1–6PubMedCrossRefGoogle Scholar
  74. 74.
    Lieberman J (2003) The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat Rev Immunol 3: 361–370PubMedCrossRefGoogle Scholar
  75. 75.
    Liu H, Andreansky S, Diaz G, Hogg T, Doherty PC (2002) Reduced functional capacity of CD8(+) T cells expanded by post-exposure vaccination of gamma-herpesvirus-infected CD4-deficient mice. J Immunol 168: 3477–3483PubMedGoogle Scholar
  76. 76.
    Malby RL, Tulip WR, Harley VR, McKimm-Breschkin JL, Laver WG, Webster RG, Colman PM (1994) The structure of a complex between the NC10 antibody and influenza virus neuraminidase and comparison with the overlapping binding site of the NC41 antibody. Structure 2: 733–746PubMedCrossRefGoogle Scholar
  77. 77.
    Mangada MM, Ennis FA, Rothman AL (2004) Quantitation of dengue virus specific CD4+ T cells by intracellular cytokine staining. J Immunol Meth 284: 89–97CrossRefGoogle Scholar
  78. 78.
    Marshall DR, Turner SJ, Belz GT, Wingo S, Andreansky S, Sangster MY, Riberdy JM, Liu T, Tan M, Doherty PC (2001) Measuring the diaspora for virus-specific CD8+ T cells. Proc Natl Acad Sci USA 98: 6313–6318PubMedCrossRefGoogle Scholar
  79. 79.
    Matloubian M, Concepcion RJ, Ahmed R (1994) CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J Virol 68: 8056–8063PubMedGoogle Scholar
  80. 80.
    Matsuda S, Gidlund M, Chiodi F, Cafaro A, Nygren A, Morein B, Nilsson K, Fenyo EM, Wigzell H (1989) Enhancement of human immunodeficiency virus (HIV) replication in human monocytes by low titres of anti-HIV antibodies in vitro. Scand J Immunol 30: 425–434PubMedGoogle Scholar
  81. 81.
    Mikloska Z, Cunningham AL (1998) Herpes simplex virus type 1 glycoproteins gB, gC and gD are major targets for CD4 T-lymphocyte cytotoxicity in HLA-DR expressing human epidermal keratinocytes. J Gen Virol 79: 353–361PubMedGoogle Scholar
  82. 82.
    Moskophidis D, Lechner F, Pircher H, Zinkernagel RM (1993) Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 362: 758–761PubMedCrossRefGoogle Scholar
  83. 83.
    Moss DJ, Burrows SR, Silins SL, Misko I, Khanna R (2001) The immunology of Epstein-Barr virus infection. Philos Trans R Soc Lond B Biol Sci 356: 475–488PubMedGoogle Scholar
  84. 84.
    Mozdzanowska K, Feng J, Eid M, Kragol G, Cudic M, Otvos L Jr, Gerhard W (2003) Induction of influenza type A virus-specific resistance by immunization of mice with a synthetic multiple antigenic peptide vaccine that contains ectodomains of matrix protein 2. Vaccine 21: 2616–2626PubMedCrossRefGoogle Scholar
  85. 85.
    Murali-Krishna K, Lau LL, Sambhara S, Lemonnier F, Altman J, Ahmed R (1999) Persistence of memory CD8 T cells in MHC class I-deficient mice. Science 286:1377–1381PubMedCrossRefGoogle Scholar
  86. 86.
    Nash P, Barrett J, Cao JX, Hota-Mitchell S, Lalani AS, Everett H, Xu XM, Robichaud J, Hnatiuk S, Ainslie C, Seet BT, McFadden G (1999) Immunomodulation by viruses: the myxoma virus story. Immunol Rev 168: 103–120PubMedCrossRefGoogle Scholar
  87. 87.
    Nguyen TH, Lei HY, Nguyen TL, Lin YS, Huang KJ, Le BL, Lin CF, Yeh TM, Do QH, Vu TQ, Chen LC, Huang JH, Lam TM, Liu CC, Halstead SB (2004) Dengue hemorrhagic fever in infants: a study of clinical and cytokine profiles. J Infect Dis 189: 221–232PubMedCrossRefGoogle Scholar
  88. 88.
    Oldstone MB (1998) Molecular mimicry and immune-mediated diseases. Faseb J 12: 1255–1265PubMedGoogle Scholar
  89. 89.
    Olive M, Eisenlohr LC, Flomenberg P (2001) Quantitative analysis of adenovirus-specific CD4+ T-cell responses from healthy adults. Viral Immunol 14: 403–413PubMedCrossRefGoogle Scholar
  90. 90.
    Ostler T, Davidson W, Ehl S (2002) Virus clearance and immunopathology by CD8(+) T cells during infection with respiratory syncytial virus are mediated by IFN-gamma. Eur J Immunol 32: 2117–2123PubMedCrossRefGoogle Scholar
  91. 91.
    Ostrowski MA, Gu JX, Kovacs C, Freedman J, Luscher MA, MacDonald KS (2001) Quantitative and qualitative assessment of human immunodeficiency virus type 1 (HIV-1)-specific CD4+ T cell immunity to gag in HIV-1-infected individuals with differential disease progression: reciprocal interferon-gamma and interleukin-10 responses. J Infect Dis 184: 1268–1278PubMedCrossRefGoogle Scholar
  92. 92.
    Parham P, Adams EJ, Arnett KL (1995) The origins of HLA-A,B,C polymorphism. Immunol Rev 143: 141–180PubMedCrossRefGoogle Scholar
  93. 93.
    Parham P (1999) Virtual reality in the MHC. Immunol Rev 167: 5–15PubMedCrossRefGoogle Scholar
  94. 94.
    Parry CM, Simas JP, Smith VP, Stewart CA, Minson AC, Efstathiou S, Alcami A (2000) A broad spectrum secreted chemokine binding protein encoded by a herpesvirus. J Exp Med 191: 573–578PubMedCrossRefGoogle Scholar
  95. 95.
    Pien GC, Nguyen KB, Malmgaard L, Satoskar AR, Biron CA (2002) A unique mechanism for innate cytokine promotion of T cell responses to viral infections. J Immunol 169: 5827–5837PubMedGoogle Scholar
  96. 96.
    Price GE, Gaszewska-Mastarlarz A, Moskophidis D (2000) The role of alpha/beta and gamma interferons in development of immunity to influenza A virus in mice. J Virol 74: 3996–4003PubMedCrossRefGoogle Scholar
  97. 97.
    Redwine JM, Buchmeier MJ, Evans CF (2001) In vivo expression of major histocompatibility complex molecules on oligodendrocytes and neurons during viral infection. Am J Pathol 159: 1219–1224PubMedGoogle Scholar
  98. 98.
    Reid HW, Doherty PC, Dawson AM (1971) Louping-ill encephalomyelitis in the sheep. 3. Immunoglobulins in cerebrospinal fluid. J Comp Pathol 81: 537–543PubMedCrossRefGoogle Scholar
  99. 99.
    Riberdy JM, Flynn KJ, Stech J, Webster RG, Altman JD, Doherty PC (1999) Protection against a lethal avian influenza A virus in a mammalian system. J Virol 73: 1453–1459PubMedGoogle Scholar
  100. 100.
    Ridge JP, Di Rosa F, Matzinger P (1998) A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393: 474–478PubMedCrossRefGoogle Scholar
  101. 101.
    Rodriguez M, Zoecklein LJ, Howe CL, Pavelko KD, Gamez JD, Nakane S, Papke LM (2003) Gamma interferon is critical for neuronal viral clearance and protection in a susceptible mouse strain following early intracranial Theiler’s murine encephalomyelitis virus infection. J Virol 77: 12252–12265PubMedCrossRefGoogle Scholar
  102. 102.
    Roth A, Yssel H, Pene J, Chavez EA, Schertzer M, Lansdorp PM, Spits H, Luiten RM (2003) Telomerase levels control the lifespan of human T lymphocytes. Blood 102: 849–857PubMedCrossRefGoogle Scholar
  103. 103.
    Saikh KU, Lee JS, Kissner TL, Dyas B, Ulrich RG (2003) Toll-like receptor and cytokine expression patterns of CD56+ T cells are similar to natural killer cells in response to infection with Venezuelan equine encephalitis virus replicons. J Infect Dis 188: 1562–1570PubMedCrossRefGoogle Scholar
  104. 104.
    Sangster MY, Topham DJ, D’Costa S, Cardin RD, Marion TN, Myers LK, Doherty PC (2000) Analysis of the virus-specific and nonspecific B cell response to a persistent B-lymphotropic gammaherpesvirus. J Immunol 164: 1820–1828PubMedGoogle Scholar
  105. 105.
    Sangster MY, Riberdy JM, Gonzalez M, Topham DJ, Baumgarth N, Doherty PC (2003) An early CD4+ T cell-dependent immunoglobulin A response to influenza infection in the absence of key cognate T-B interactions. J Exp Med 198: 1011–1021PubMedCrossRefGoogle Scholar
  106. 106.
    Sarawar SR, Blackman MA, Doherty PC (1994) Superantigen shock in mice with an inapparent viral infection. J Infect Dis 170: 1189–1194PubMedGoogle Scholar
  107. 107.
    Schluns KS, Lefrancois L (2003) Cytokine control of memory T-cell development and survival. Nat Rev Immunol 3: 269–279PubMedCrossRefGoogle Scholar
  108. 108.
    Schwimmbeck PL, Dyrberg T, Drachman DB, Oldstone MB (1989) Molecular mimicry and myasthenia gravis. An autoantigenic site of the acetylcholine receptor alpha-subunit that has biologic activity and reacts immunochemically with herpes simplex virus. J Clin Invest 84: 1174–1180PubMedCrossRefGoogle Scholar
  109. 109.
    Shope RE (1994) The discovery of arbovirus diseases. Ann NYAcad Sci 740: 138–145CrossRefGoogle Scholar
  110. 110.
    Shope RE (2003) Epidemiology of other arthropod-borne flaviviruses infecting humans. Adv Virus Res 61: 373–391PubMedGoogle Scholar
  111. 111.
    Slifka MK, Matloubian M, Ahmed R (1995) Bone marrow is a major site of long-term antibody production after acute viral infection. J Virol 69: 1895–1902PubMedGoogle Scholar
  112. 112.
    Slifka MK, Ahmed R (1998) Long-lived plasma cells: a mechanism for maintaining persistent antibody production. Curr Opin Immunol 10: 252–258PubMedCrossRefGoogle Scholar
  113. 113.
    Slifka MK, Whitton JL (2000) Antigen-specific regulation of T cell-mediated cytokine production. Immunity 12: 451–457PubMedCrossRefGoogle Scholar
  114. 114.
    Smith-Jensen T, Burgoon MP, Anthony J, Kraus H, Gilden DH, Owens GP (2000) Comparison of immunoglobulin G heavy-chain sequences in MS and SSPE brains reveals an antigen-driven response. Neurology 54: 1227–1232PubMedGoogle Scholar
  115. 115.
    Sprent J, Tough DF (2001) T cell death and memory. Science 293: 245–248PubMedCrossRefGoogle Scholar
  116. 116.
    Spriggs MK (1996) One step ahead of the game: viral immunomodulatory molecules. Annu Rev Immunol 14: 101–130PubMedCrossRefGoogle Scholar
  117. 117.
    Stevenson PG, Belz GT, Altman JD, Doherty PC (1998) Virus-specific CD8(+) T cell numbers are maintained during gamma-herpesvirus reactivation in CD4-deficient mice. Proc Natl Acad Sci USA 95: 15565–15570PubMedCrossRefGoogle Scholar
  118. 118.
    Stevenson PG, Belz GT, Castrucci MR, Altman JD, Doherty PC (1999) A gammaherpesvirus sneaks through a CD8(+) T cell response primed to a lytic-phase epitope. Proc Natl Acad Sci USA 96: 9281–9286PubMedCrossRefGoogle Scholar
  119. 119.
    Tan JT, Dudl E, LeRoy E, Murray R, Sprent J, Weinberg KI, Surh CD (2001) IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Natl Acad Sci USA 98: 8732–8737PubMedCrossRefGoogle Scholar
  120. 120.
    Topham DJ, Tripp RA, Doherty PC (1997) CD8+ T cells clear influenza virus by perforin or Fas-dependent processes. J Immunol 159: 5197–5200PubMedGoogle Scholar
  121. 121.
    Topham DJ, Doherty PC (1998) Clearance of an influenza A virus by CD4+ T cells is inefficient in the absence of B cells. J Virol 72: 882–885PubMedGoogle Scholar
  122. 122.
    Topham DJ, Cardin RC, Christensen JP, Brooks JW, Belz GT, Doherty PC (2001) Perforin and Fas in murine gammaherpesvirus-specific CD8(+) T cell control and morbidity. J Gen Virol 82: 1971–1981PubMedGoogle Scholar
  123. 123.
    Turner SJ, Diaz G, Cross R, Doherty PC (2003) Analysis of clonotype distribution and persistence for an influenza virus-specific CD8+T cell response. Immunity 18: 549–559PubMedCrossRefGoogle Scholar
  124. 124.
    Turnley AM, Starr R, Bartlett PF (2002) Failure of sensory neurons to express class I MHC is due to differential SOCS1 expression. J Neuroimmunol 123: 35–40PubMedCrossRefGoogle Scholar
  125. 125.
    Valenzuela HF, Effros RB (2002) Divergent telomerase and CD28 expression patterns in human CD4 and CD8 T cells following repeated encounters with the same antigenic stimulus. Clin Immunol 105: 117–125PubMedCrossRefGoogle Scholar
  126. 126.
    Webby RJ, Andreansky S, Stambas J, Rehg JE, Webster RG, Doherty PC, Turner SJ (2003) Protection and compensation in the influenza virus-specific CD8+ T cell response. Proc Natl Acad Sci USA 100: 7235–7240PubMedCrossRefGoogle Scholar
  127. 127.
    Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56: 152–179PubMedGoogle Scholar
  128. 128.
    Wodarz D, Krakauer DC (2000) Defining CTL-induced pathology: implications for HIV. Virology 274: 94–104PubMedCrossRefGoogle Scholar
  129. 129.
    Woodland DL, Dutton RW (2003) Heterogeneity of CD4(+) and CD8(+) T cells. Curr Opin Immunol 15: 336–342PubMedCrossRefGoogle Scholar
  130. 130.
    Yewdell J, Anton LC, Bacik I, Schubert U, Snyder HL, Bennink JR (1999) Generating MHC class I ligands from viral gene products. Immunol Rev 172: 97–108PubMedCrossRefGoogle Scholar
  131. 131.
    Yewdell JW, Norbury CC, Bennink JR (1999) Mechanisms of exogenous antigen presentation by MHC class I molecules in vitro and in vivo: implications for generating CD8+ T cell responses to infectious agents, tumors, transplants, and vaccines. Adv Immunol 73: 1–77PubMedCrossRefGoogle Scholar
  132. 132.
    Yoder SM, Zhu Y, Ikizler MR, Wright PF (2004) Role of complement in neutralization of respiratory syncytial virus. J Med Virol 72: 688–694PubMedCrossRefGoogle Scholar
  133. 133.
    Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD, Ahmed R (1998) Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med 188: 2205–2213PubMedCrossRefGoogle Scholar
  134. 134.
    Zhang WJ, Sarawar S, Nguyen P, Daly K, Rehg JE, Doherty PC, Woodland DL, Blackman MA (1996) Lethal synergism between influenza infection and staphylococcal enterotoxin B in mice. J Immunol 157: 5049–5060PubMedGoogle Scholar
  135. 135.
    Zhang X, Fujii H, Kishimoto H, LeRoy E, Surh CD, Sprent J (2002) Aging leads to disturbed homeostasis of memory phenotype CD8(+) cells. J Exp Med 195: 283–293PubMedCrossRefGoogle Scholar
  136. 136.
    Zhong W, Marshall D, Coleclough C, Woodland DL (2000) CD4+ T cell priming accelerates the clearance of Sendai virus in mice, but has a negative effect on CD8+ T cell memory. J Immunol 164: 3274–3282PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2005

Authors and Affiliations

  • P. C. Doherty
    • 1
    • 2
  • S. J. Turner
    • 1
  1. 1.Department of Microbiology and ImmunologyUniversity of MelbourneVictoriaAustralia
  2. 2.Department of ImmunologySt Jude Children’s Research HospitalMemphisUSA

Personalised recommendations