Regular Patterned Surfaces from Core-Shell Particles. Preparation and Characterization

  • Alla Synytska
  • Leonid Ionov
  • Victoria Dutschk
  • Sergiy Minko
  • Klaus-Jochen Eichhorn
  • Manfred Stamm
  • Karina GrundkeEmail author
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 132)


A simple route for fabrication of regularly patterned surfaces with specifically designed surface roughness and chemistry is reported using colloidal particles. The surface was built up from self-assembled submicrometer- and micrometer-sized monodisperse core-shell particles of different radius (0.1–10 μm) forming ordered arrays. In this way, an increase in the vertical roughness is achieved with increasing particle radius, but without changing the Wenzel roughness factor. The morphology of the ordered particle arrays was characterized using an optical imaging method (MicroGlider), scanning force (SFM) and scanning electron (SEM) microscopy. The organic shell was either prepared by covalent grafting of polymer brushes or by chemisorption of a silane with a long fluoroalkyl tail. From FTIR-ATR, diffuse reflection IR spectroscopy, and capillary penetration experiments, it was concluded that the grafted polymer completely covers the surface of the silica particles. The solid surface tension of the organic shell obtained from contact angle measurements on smooth surfaces decreased in the following order: polystyrene brush-PS (γsv = 28.9 mJ/m2) > copolymer of polystyrene and 2,3,4,5,6-pentafluoropolystyrene brush-FPS (γsv = 24.3 mJ/m2) > chemisorbed (tridecafluoro-1,1,2,2-tetrahydrooctyl) dimethylchlorosilane-FSI (γsv = 18.3 mJ/m2). Water contact angle measurements revealed an influence of the surface height roughness and the shell chemistry on the wettability. For all surfaces investigated, the contact angle hysteresis increased on the rough model surfaces compared to the smooth surfaces due to the increase of the advancing contact angle and the decrease of the receding angle. The lower the surface free energy of the shell chemistry, the smaller is the contact angle hysteresis on the closely packed surface arrays. Further the contact angles varied with increasing height roughness. A possible explanation for this behaviour is that the vertical roughness influences the curvature radius of the liquid in trapped air pockets at the solid-liquid interface as was already assumed in the literature for nanostructured metal surfaces and paraffin-coated steel balls.

Core-shell particles Modification Patterned surfaces Roughness Wettability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Authors thank Dr. M. Motornov for providing assistance in grafting of particles, Ms. G. Adam, Ms. G. Zedler and Mr. U. Streller for FTIR-ATR, capillary penetration and SEM investigations, respectively.


  1. 1.
    Barthlott W, Neinhuis C (1997) Planta 202:1 CrossRefGoogle Scholar
  2. 2.
    Tsujii K, Yamamoto T, Onda T, Shibuichi S (1997) Angew Chem 109:1042 CrossRefGoogle Scholar
  3. 3.
    Nakajima A, Fujishima A, Hashimoto K, Watanabe T (1999) Adv Mater 11:1365 CrossRefGoogle Scholar
  4. 4.
    Youngblood J, McCarthy TJ (1999) Macromolecules 32:6800 CrossRefGoogle Scholar
  5. 5.
    Chen W, Fadeev AY, Hsieh MC, Öner D, Youngblood J, McCarthy T (1999) Langmuir 15:3395 CrossRefGoogle Scholar
  6. 6.
    Minko S, Müller M, Motornov M, Nitschke M, Grundke K, Stamm M (2003) J Am Chem Soc 125:3896 CrossRefGoogle Scholar
  7. 7.
    Grundke K, Nitschke M, Minko S, Stamm M, Froeck C, Simon F, Uhlmann S, Pöschel K, Motornov M (2003) In: Mittal KL (ed) Contact Angle, Wettability and Adhesion, vol 3, p 1–25 Google Scholar
  8. 8.
    Öner D, McCarthy TJ (2000) Langmuir 16:7777 CrossRefGoogle Scholar
  9. 9.
    Onda T, Shibuichi S, Satoh N, Tsujii K (1996) Langmuir 12:2125 CrossRefGoogle Scholar
  10. 10.
    Shibuichi S, Onda T, Satoh N, Tsujii K (1996) J Phys Chem 100:19512 CrossRefGoogle Scholar
  11. 11.
    Wenzel RN (1936) Ind Eng Chem Res 28:988 CrossRefGoogle Scholar
  12. 12.
    Cassie A (1948) Discuss Faraday Soc 3:11 CrossRefGoogle Scholar
  13. 13.
    Johnson RE, Dettre RH (1964) In: Contact angle, Wettability and Adhesion. Adv Chem Ser 43:112 CrossRefGoogle Scholar
  14. 14.
    Dettre RH, Johnson RE (1964) In: Contact angle, Wettability and Adhesion. Adv Chem Ser 43:136 CrossRefGoogle Scholar
  15. 15.
    Johnson RE, Dettre RH (1968) J Phys Chem 64:1744 Google Scholar
  16. 16.
    Bico J, Tordeux C, Quere D (2001) Europhys Lett 55:214 CrossRefGoogle Scholar
  17. 17.
    Quere D (2003) Nanotechnology 14:1109 CrossRefGoogle Scholar
  18. 18.
    Patankar NA (2003) Langmuir 19:1249 CrossRefGoogle Scholar
  19. 19.
    Patankar NA (2004) Langmuir 20:7097 CrossRefGoogle Scholar
  20. 20.
    Marmur A, Krasovitski B (2003) Langmuir 19:8343 CrossRefGoogle Scholar
  21. 21.
    Zhang J, Kwok DY (2005) J Colloid Interface Sci 282:434 CrossRefGoogle Scholar
  22. 22.
    Coulson SR, Woodward I, Badyal JPS, Brewer SA, Willis C (2000) J Phys Chem B 104:8836 CrossRefGoogle Scholar
  23. 23.
    Shirtcliffe N, Thiemann P, Stratmann M, Grundmeier G (2001) Surf Coat Technol 142:1121 CrossRefGoogle Scholar
  24. 24.
    Dae-Hwan J, Park J, Choi YK, Lee SB, Park HS, Rühe J (2002) Langmuir 18:6133 CrossRefGoogle Scholar
  25. 25.
    Bartell FE, Shepard JW (1953) J Phys Chem 57:211 CrossRefGoogle Scholar
  26. 26.
    Krupenkin TN, Taylor JA, Schneider TM, Yang S (2004) Langmuir 20:3824 CrossRefGoogle Scholar
  27. 27.
    Yang SM, Migues H, Ozin GA (2002) Adv Func Mater 12:425 CrossRefGoogle Scholar
  28. 28.
    van Blaaderen A, Ruel R, Wiltzius PP (1997) Nature 385:321 CrossRefGoogle Scholar
  29. 29.
    Park SH, Qin D, Xia Y (1998) Adv Mater 10:1028 CrossRefGoogle Scholar
  30. 30.
    Yang SM, Ozin GA (2000) Chem Commun 24:2507 CrossRefGoogle Scholar
  31. 31.
    Lee W, Jin MK, Yoo WC, Jang ES, Choy JH, Kim JH, Char K, Lee JK (2004) Langmuir 20:287 CrossRefGoogle Scholar
  32. 32.
    Luzinov I, Julthongpiput D, Malz H, Pionteck J, Tsukruk VV (2000) Macromolecules 33:1043 CrossRefGoogle Scholar
  33. 33.
    Goldenberg LM, Wagner J, Stumpe J, Paulke BR, Görnitz E (2002) Langmuir 18:3319 CrossRefGoogle Scholar
  34. 34.
    Minko S, Patil S, Datsyuk V, Simon F, Eichhorn KJ, Motornov M, Usov D, Tokarev I, Stamm M (2002) Langmuir 18:289 CrossRefGoogle Scholar
  35. 35.
    Kwok DY, Gietzelt T, Grundke K, Jacobasch HJ, Neumann AW (1997) Langmuir 13:2880 CrossRefGoogle Scholar
  36. 36.
    Grundke K, Augsburg A (2000) J Adhesion Sci Technol 14:765 CrossRefGoogle Scholar
  37. 37.
    Grundke K (2001) In: Holmberg K (ed) Handbook of Applied Surfaceand Colloid Chemistry: Wetting, Spreading and Penetration, chapter 7, vol 2, p 119–140 Google Scholar
  38. 38.
    Scanning Probe Microscopy (2000) Training Notebook, Digital Instruments, Veeco Metrology Group, Santa Barbara, CA, p 40 Google Scholar
  39. 39.
    Kwok DY, Neumann AW (1999) Adv Colloid Interface Sci 81:167 CrossRefGoogle Scholar
  40. 40.
    Nakae H, Inui R, Hirata Y, Saito H (1998) Acta Mater 46:2313 CrossRefGoogle Scholar
  41. 41.
    Synytska A, Ionov L, Minko S, Motornov M, Eichhorn KJ, Stamm M, Grundke K (2004) Polym Mater Sci Eng 90:624 Google Scholar
  42. 42.
    Hennig A, Grundke K, Frenzel R, Stamm M (2002) Tenside Surfactants Detergents 39:243 Google Scholar

Authors and Affiliations

  • Alla Synytska
    • 1
  • Leonid Ionov
    • 2
  • Victoria Dutschk
    • 1
  • Sergiy Minko
    • 3
  • Klaus-Jochen Eichhorn
    • 1
  • Manfred Stamm
    • 1
  • Karina Grundke
    • 1
    Email author
  1. 1.Leibniz Institute of Polymer Research Dresden e.V.DresdenGermany
  2. 2.Max-Planck-Institute of Molecular Cell Biology and GeneticsDresdenGermany
  3. 3.Chemistry DepartmentClarkson UniversityPotsdamUSA

Personalised recommendations