Mechanical Properties of Freestanding Polyelectrolyte Capsules: a Quantitative Approach Based on Shell Theory

  • N. Elsner
  • F. Dubreuil
  • R. Weinkamer
  • M. Wasicek
  • F.D. Fischer
  • A. FeryEmail author
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 132)


In this paper we report on AFM force spectroscopy measurements on hollow polymeric spheres of colloidal dimensions made from polyelectrolyte multilayers of polyallylamine and polystyrenesulfonate in water. We find that the shells show a linear force-deformation characteristic for deformations of the order of the shell wall thickness. This experimental outcome is discussed in terms of analytical results of continuum mechanics, in particular the scaling behaviour of the shell spring constant with wall thickness, shell radius and speed of the deformation is analysed. The experimental results agree well with the predictions of Reissner for thin shells and allow us to rescale our stiffness data such that a master curve of shell stiffness is obtained. The result of Reissner is strictly valid only for point like loading situations, while in our experiments a more extended plate like load is applied. Experimentally we find indeed little influence of the probe geometry on the shell spring constant. This result agrees well with finite element (FE) calculations that show that the Reissner result is a good approximation also for non point like loading situations, as long as small deformations are considered.

Polyelectrolytes Multilayers Mechanical properties Deformation Shells Capsules 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We would like to acknowledge financial support from the German Science foundation (DFG) within the project “Adhäsion und Mechanik von Polyelektrolyt-Hohlkörpern” and the Max Planck Society. We are grateful for stimulating discussions with Prof. Helmuth Möhwald.


  1. 1.
    Ivanovska IL, de Pablo PJ, Ibarra B, Sgalari G, MacKintosh FC, Carrascosa JL, Schmidt CF, Wuite GJL (2004) Proc Natl Acad Sci 101:7600 CrossRefGoogle Scholar
  2. 2.
    Decher G, Hong JD, Schmitt J (1992) Thin Solid Films 210/211:831 CrossRefGoogle Scholar
  3. 3.
    Decher G (1997) Science 277:1232 CrossRefGoogle Scholar
  4. 4.
    Donath E, Sukhorukov GB, Caruso F, Davis SA, Möhwald H (1998) Angewandte Chemie 110:2324 Google Scholar
  5. 5.
    Shenoy DB, Antipov AA, Sukhorukov GB, Möhwald H (2003) Biomacromol 4:265 CrossRefGoogle Scholar
  6. 6.
    Decher G, Schlenoff JB (2003) Multilayer Thin Films. Wiley-VCH Google Scholar
  7. 7.
    Bäumler H, Artmann G, Voigt A, Mitlöhner R, Neu B, Kiesewetter H (2000) J Microencapsul 17:651 CrossRefGoogle Scholar
  8. 8.
    Gao CY, Leporatti S, Moya S, Donath E, Möhwald H (2001) Langmuir 17:3491 CrossRefGoogle Scholar
  9. 9.
    Gao C, Donath E, Moya S, Dudnik V, Möhwald H (2001) Eur Phys J E 5:21 CrossRefGoogle Scholar
  10. 10.
    Lulevich VV, Andrienko D, Vinogradova OI (2004) J Chem Phys 120:3822 CrossRefGoogle Scholar
  11. 11.
    Vinogradova OI (2004) J Phys: Condensed Matter 16:R1105 Google Scholar
  12. 12.
    Fery A, Dubreuil F, Möhwald H (2004) New J Phys 6:13 CrossRefGoogle Scholar
  13. 13.
    Dubreuil F, Elsner N, Fery A (2003) Eur Phys J E 12:215 CrossRefGoogle Scholar
  14. 14.
    Heuvingh J, Zappa M, Fery A (2005) Langmuir 21:3165 CrossRefGoogle Scholar
  15. 15.
    Vinogradova OI, Andrienko D, Lulevich VV, Nordschild S, Sukhorukov GB (2004) Macromol 37:1113 CrossRefGoogle Scholar
  16. 16.
    Richter B, Kirstein S (1999) J Chem Phys 111:5191 CrossRefGoogle Scholar
  17. 17.
    Schwarz B, Schönhoff M (2002) Langmuir 18:2964 CrossRefGoogle Scholar
  18. 18.
    Sader JE, Chon JWM, Mulvaney P (1999) Rev Sci Instrum 70:3967 CrossRefGoogle Scholar
  19. 19.
    Hutter JL, Bechhoefer J (1993) Rev Sci Instrum 64:1868 CrossRefGoogle Scholar
  20. 20.
    Niordson FI (1985) Shell Theory, North-Holland Series in Applied Mathematics and Mechanics, Vol. 29, North-Holland Google Scholar
  21. 21.
    Pogorelov AV (1988) Bendings of surfaces and stability of shells. Am Chem Soc, Providence Google Scholar
  22. 22.
    Reissner E (1946) J Math Phys 25:80 Google Scholar
  23. 23.
    Reissner E (1946) J Math Phys 25:279 Google Scholar
  24. 24.
    Koiter WT (1963) in Progress in Applied Mechanics Macmillan: New York 1963 Vol. Prager Anniversary, p 155 Google Scholar
  25. 25.
    Gregory RD, Milac TI, Wan FYM (1999) SIAM J Appl Math 59:1080 CrossRefGoogle Scholar
  26. 26.
    Pauchard L, Rica S (1998) Phil Mag B 78:225 CrossRefGoogle Scholar
  27. 27.
    Kügler R, Schmitt J, Knoll W (2002) Macromol Chem Phys 203:413 CrossRefGoogle Scholar
  28. 28.
    Lösche M, Schmitt J, Decher G, Bouwman WG, Kjaer K (1998) Macromolecules 31:8893 CrossRefGoogle Scholar

Authors and Affiliations

  • N. Elsner
    • 1
  • F. Dubreuil
    • 1
  • R. Weinkamer
    • 2
  • M. Wasicek
    • 3
  • F.D. Fischer
    • 3
  • A. Fery
    • 1
    Email author
  1. 1.Abteilung GrenzflächenMax Planck Institut für Kolloid- und GrenzflächenforschungPotsdamGermany
  2. 2.Abteilung BiomaterialienMax Planck Institut für Kolloid- und GrenzflächenforschungPotsdamGermany
  3. 3.Institute of Mechanics, Montanuniversität Leoben, and Erich Schmid Institute of Material Science, Austrian Academy of Sciences, and Materials Center Leoben, GmbHAustria

Personalised recommendations