Skip to main content

Fragment-Based Drug Discovery Using Rational Design

  • Conference paper
  • First Online:
Sparking Signals

Part of the book series: Ernst Schering Foundation Symposium Proceedings ((SCHERING FOUND,volume 2007/3))

Abstract

Fragment-based drug discovery (FBDD) is established as an alternative approach to high-throughput screening for generating novel small molecule drug candidates. In FBDD, relatively small libraries of low molecular weight compounds (or fragments) are screened using sensitive biophysical techniques to detect their binding to the target protein. A lower absolute affinity of binding is expected from fragments, compared to much higher molecular weight hits detected by high-throughput screening, due to their reduced size and complexity. Through the use of iterative cycles of medicinal chemistry, ideally guided by three-dimensional structural data, it is often then relatively straightforward to optimize these weak binding fragment hits into potent and selective lead compounds. As with most other lead discovery methods there are two key components of FBDD; the detection technology and the compound library. In this review I outline the two main approaches used for detecting the binding of low affinity fragments and also some of the key principles that are used to generate a fragment library. In addition, I describe an example of how FBDD has led to the generation of a drug candidate that is now being tested in clinical trials for the treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berdini V, O'Reilly M, Congreve MS, Tickle IJ (2007) Fragment-based screening by X-ray crystallography. Jhoti H, Leach AR (eds) Structure-based drug discovery. Springer, Berlin Heidelberg New York, pp 99–123

    Google Scholar 

  • Beteva A, Cipriani F, Cusack S, Delageniere S, Gabadinho J, Gordon EJ, Guijarro M, Hall DR, Larsen S, Launer L, Lavault CB, Leonard GA, Mairs T, McCarthy A, McCarthy J, Meyer J, Mitchell E, Monaco S, Nurizzo D, Pernot P, Pieritz R, Ravelli RG, Rey V, Shepard W, Spruce D, Stuart DI, Svensson O, Theveneau P, Thibault X, Turkenburg J, Walsh M, McSweeney SM (2006) High-throughput sample handling and data collection at synchrotrons: embedding the ESRF into the high-throughput gene-to-structure pipeline. Acta Cryst D Biol Crystallogr 62:1162–1169

    Article  CAS  Google Scholar 

  • Blundell TL, Jhoti H, Abell C (2002) High-throughput crystallography for lead discovery in drug design. Nat Rev Drug Disc 1:45–54

    Article  CAS  Google Scholar 

  • Card GL, Blasdel L, England BP, Zhang C, Suzuki Y, Gillette S, Fong D, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim SH, Schlessinger J, Zhang KY (2005) A family of phosphodiesterase inhibitors discovered by cocrystallography and scaffold-based drug design. Nat Biotechnol 23:201–207

    Article  PubMed  CAS  Google Scholar 

  • Carr R, Jhoti H (2002) Structure-based screening of low-affinity compounds. Drug Discov Today 7:522–527

    Article  PubMed  CAS  Google Scholar 

  • Congreve M, Carr R, Murray C, Jhoti H (2003) A 'rule of three'™ for fragment-based lead discovery? Drug Discov Today 8:876–877

    Article  PubMed  Google Scholar 

  • Erlanson DA, McDowell RS, O'Brien T (2004a) Fragment-based drug discovery. J Med Chem 47:3463–3482

    Article  PubMed  CAS  Google Scholar 

  • Evrard GX, Langer GG, Perrakis A, Lamzin VS (2007) Assessment of automatic ligand building in ARP/wARP. Acta Cryst D Biol Crystallogr 63:108–117

    Article  Google Scholar 

  • Fischer PM, Lane DP (2000) Inhibitors of cyclin-dependent kinases as anti-cancer therapeutics. Curr Med Chem 7:1213–1245.

    Google Scholar 

  • Forstner M, Leder L, Mayr LM (2007) Optimization of protein expression systems for modern drug discovery. Expert Rev Proteomics 4:67–78

    Article  PubMed  CAS  Google Scholar 

  • Gill AL (2004) New lead generation strategies for protein kinase inhibitors – fragment-based screening approaches, Mini-reviews Med Chem 4:301–311

    CAS  Google Scholar 

  • Gill A, Frederickson M, Cleasby A, Woodhead SJ, Carr MG, Woodhead AJ, Walker MT, Congreve MS, Devine LA, Tisi D, Magor LCA, Davis DJ, Curry J, Anthony R, Padova A, Murray CW, Carr RAE, Jhoti H (2005) Identification of novel p38α MAP kinase inhibitors using fragment-based lead generation. J Med Chem 48:414–426

    Article  PubMed  CAS  Google Scholar 

  • Hajduk PJ, Mack JC, Olejniczak ET, Park C, Dandliker PJ, Beutel BA (2004) SOS-NMR: a saturation transfer NMR-based method for determining the structures of protein-ligand complexes. J Am Chem Soc 126:2390–2398

    Article  PubMed  CAS  Google Scholar 

  • Hajduk PJ (2006) Fragment-based drug design: how big is too big? J Med Chem 49:6972–6976

    Article  PubMed  CAS  Google Scholar 

  • Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6:211–219

    Article  PubMed  CAS  Google Scholar 

  • Hann MM, Leach AR, Harper G (2001) Molecular complexity and its impact on the probability of finding leads for drug discovery. J Chem Inf Comp Sci 41:856–864

    Article  CAS  Google Scholar 

  • Hartshorn MJ, Murray CW, Cleasby A, Frederickson M, Tickle IJ, Jhoti H (2005) Fragment-based lead discovery using X-ray crystallography. J Med Chem 48:403–413

    Article  PubMed  CAS  Google Scholar 

  • Hopkins AL, Groom CR, Alex A (2004) Ligand efficiency: a useful metric for lead selection. Drug Discovery Today 9:430–431

    Article  PubMed  Google Scholar 

  • Jahnke W, Erlanson DA (2006) Fragment-based approaches in drug discovery. Wiley-VCH

    Google Scholar 

  • Jhoti H (2003) High-throughput X-ray techniques and drug discovery. In: Waldman H, Koppitz M (eds) Small molecule-protein interactions. (Ernst-Schering Research Foundation) Springer, Berlin Heidelberg New York, pp 43–58

    Google Scholar 

  • Jhoti H, Leach AR (2007) Structure-based drug discovery. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kuntz ID, Chen K, Sharp KA, Kollman PA (1999) The maximal affinity of ligands. Proc Natl Acad Sci USA 96:9997–10002

    Article  PubMed  CAS  Google Scholar 

  • Lepre CA, Moore JM (2007) Fragment-based NMR Screening in lead discovery. In: Jhoti H, Leach AR (eds) Structure-based drug discovery. Springer, Berlin Heidelberg New York, pp 73–98

    Google Scholar 

  • Mayer M, Meyer B (2001) Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc 123:6108–6117

    Article  PubMed  CAS  Google Scholar 

  • McCoy MA, Senior MM, Wyss DF (2005) Screening of protein kinases by ATP-STD NMR spectroscopy. J Am Chem Soc 127:7978–7979

    Article  PubMed  CAS  Google Scholar 

  • Mooij WT, Hartshorn MJ, Tickle IJ, Sharff AJ, Verdonk ML, Jhoti H (2006) Automated protein-ligand crystallography for structure-based drug design. Chem Med Chem 1:827–838

    PubMed  CAS  Google Scholar 

  • Muchmore SW, Olson J, Jones R, Pan J, Blum M, Greer J, Merrick SM, Magdalinos P, Nienaber VL (2000) Automated crystal mounting and data collection for protein crystallography. Structure 8:R243–R246

    Article  PubMed  CAS  Google Scholar 

  • Murray CW, Verdonk ML (2002) The consequences of translational and rotational entropy lost by small molecules on binding to proteins. J Comp-Aided Mol Design 16:741–753

    Article  CAS  Google Scholar 

  • Nienaber VL, Richardson PL, Klighofer V, Bouska JJ, Giranda VL, Greer J (2000) Discovering novel ligands for macromolecules using X-ray crystallographic screening. Nat Biotechnol 18:1105–1108

    Article  PubMed  CAS  Google Scholar 

  • Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O'Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–681

    Article  PubMed  CAS  Google Scholar 

  • Oldfield TJ (2001) X-LIGAND: an application for the automated addition of flexible ligands into electron density. Acta Cryst D Biol Crystallogr 57:696–705

    Article  CAS  Google Scholar 

  • Rees DC, Congreve M, Murray CW, Carr R (2004) Fragment-based lead discovery. Nat Rev Drug Discov 3:660–672

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Pedregal VM, Reese M, Meiler J, Blommers MJ, Griesinger C, Carlomagno T (2005) The INPHARMA method: protein-mediated interligand NOEs for pharmacophore mapping. Angew Chem Int Ed Engl 44:4172–4175

    Article  PubMed  CAS  Google Scholar 

  • Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274:1531–1534

    Article  PubMed  CAS  Google Scholar 

  • Stevens RC (2000) High-throughput protein crystallization, Curr Opin Struct Biol 10:558–563

    CAS  Google Scholar 

  • Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein-ligand docking using GOLD. Proteins 52:609–623

    Article  PubMed  CAS  Google Scholar 

  • Verlinde CLMJ, Kim H, Bernstein BE, Mande SC, Hol WGJ (1997) in Structure-based drug design. Edited by Veerapandian P. Marcel Dekker, New York, pp. 365–394

    Google Scholar 

Download references

Acknowledgements

I wish to thank all the staff at Astex Therapeutics for allowing me to present their work. In particular, I would thank Dr. Glyn Williams for guidance on the NMR techniques and Dr. Ian Tickle for X-ray crystallography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Jhoti .

Editor information

G. Baier B. Schraven U. Zügel A. von Bonin

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this paper

Cite this paper

Jhoti, H. (2008). Fragment-Based Drug Discovery Using Rational Design. In: Baier, G., Schraven, B., Zügel, U., von Bonin, A. (eds) Sparking Signals. Ernst Schering Foundation Symposium Proceedings, vol 2007/3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/2789_2007_064

Download citation

Publish with us

Policies and ethics