Of Mice and Men: The Many Guises of Estrogens

Conference paper
Part of the Ernst Schering Foundation Symposium Proceedings book series (SCHERING FOUND, volume 2006/1)

Abstract

Models of estrogen insufficiency have revealed new and unexpected roles for estrogens in males as well as females. These models include natural mutations in the aromatase gene in humans, as well as mouse knock-outs of aromatase and the estrogen receptors, and one man with a mutation in the ERα gene. These mutations, both natural and experimental, have revealed that estrogen deficiency results in a spectrum of symptoms. These include loss of fertility and libido in both males and females; loss of bone in both males and females; a cardiovascular and cerebrovascular phenotype; development of a metabolic syndrome in both males and females, with truncal adiposity and male-specific hepatic steatosis. Most of these symptoms can be reversed or attenuated by estradiol therapy. Thus estrogen is involved in the maintenance of general physiological homeostasis in both sexes.

References

  1. American Heart Association (2006) Heart Disease and Stroke Statistics: 2006 Update. American Heart Association, DallasGoogle Scholar
  2. Bakker J et al (2004) Restoration of male sexual behavior by adult exogenous estrogens in male aromatase knockout mice. Horm Behav 46:1–10PubMedCrossRefGoogle Scholar
  3. Boccardo F et al (2005) Evaluation of tamoxifen and anastrozole in the prevention of gynecomastia and breast pain induced by bicalutamide monotherapy of prostate cancer. J Clin Oncol 23:808–815PubMedCrossRefGoogle Scholar
  4. Bouillon R et al (2004) Estrogens are essential for male pubertal periosteal bone expansion. J Clin Endocrinol Metab 89:6025–6029PubMedCrossRefGoogle Scholar
  5. Bruno S, Maisonneuve P, Castellana P et al (2005) Incidence and risk factors for non-alcoholic steatohepatitis: prospective study of 5408 women enrolled in Italian tamoxifen chemoprevention trial. BMJ 330:932PubMedCrossRefGoogle Scholar
  6. Carani C et al (1997) Effect of testosterone and estradiol in a man with aromatase deficiency. N Engl J Med 337:91–95PubMedCrossRefGoogle Scholar
  7. Carani C et al (1999) Role of oestrogen in male sexual behaviour: insights from the natural model of aromatase deficiency. Clin Endocrinol (Oxf) 51:517–524CrossRefGoogle Scholar
  8. Carani C et al (2005) Sex steroids and sexual desire in a man with a novel mutation of aromatase gene and hypogonadism. Psychoneuroendocrinology 30:413–417PubMedCrossRefGoogle Scholar
  9. Chen S, Zhou D (1992) Functional domains of aromatase cytochrome P450 inferred from comparative analyses of amino acid sequences and substantiated by site-directed mutagenesis experiments. J Biol Chem 267:22587–22594PubMedGoogle Scholar
  10. Chlebowski RT (2005) Bone health in women with early-stage breast cancer. Clin Breast Cancer 5(Suppl 2):S35–S40PubMedCrossRefGoogle Scholar
  11. Couse JF, Hewitt SC, Bunch DO et al (1999) Postnatal sex reversal of the ovaries in mice lacking estrogen receptors α and β. Science 286:2328–2331PubMedCrossRefGoogle Scholar
  12. DeJong PC, ven de Ven J, Nortier HW et al (1997) Inhibition of breast cancer tissue aromatase activity and estrogen concentrations by the third-generation aromatase inhibitor vorozole. Cancer Res 57:2109–2111Google Scholar
  13. Deladoey J et al (1999) Aromatase deficiency caused by a novel P450arom gene mutation: impact of absent estrogen production on serum gonadotropin concentration in a boy. J Clin Endocrinol Metab 84:4050–4054PubMedCrossRefGoogle Scholar
  14. Dong L et al (1999) Mechanisms of transcriptional activation of bcl-2 gene expression by 17beta-estradiol in breast cancer cells. J Biol Chem 274:32099–32107PubMedCrossRefGoogle Scholar
  15. Dougherty RH et al (2005) Effect of aromatase inhibition on lipids and inflammatory markers of cardiovascular disease in elderly men with low testosterone levels. Clin Endocrinol (Oxf) 62:228–235CrossRefGoogle Scholar
  16. Dunkel L, Wickman S (2003) Novel treatment of short stature with aromatase inhibitors. J Steroid Biochem Mol Biol 86:345–356PubMedCrossRefGoogle Scholar
  17. Dupont S, Krust A, Gansmuller A et al (2000) Effect of single and compound knockouts of estrogen receptor α (ERα) and β (ERβ) on mouse reproductive phenotypes. Development 127:4277–4291PubMedGoogle Scholar
  18. Faustini-Fustini M et al (1999) Oestrogen deficiency in men: where are we today? Eur J Endocrinol 140:111–129PubMedCrossRefGoogle Scholar
  19. Fisher CR, Graves KH, Parlow AF, Simpson ER (1998) Characterization of mice deficient in aromatase (ArKO) because of targeted disruption of the cyp19 gene. Proc Natl Acad Sci USA 95:6965–6970PubMedCrossRefGoogle Scholar
  20. Freedman OC et al (2005) Using aromatase inhibitors in the neoadjuvant setting: evolution or revolution? Cancer Treat Rev 31:1–17PubMedCrossRefGoogle Scholar
  21. Gennari L et al (2004) Aromatase activity and bone homeostasis in men. J Clin Endocrinol Metab 89:5898–5907PubMedCrossRefGoogle Scholar
  22. Grumbach MM, Auchus RJ (1999) Estrogen: consequences and implications of human mutations in synthesis and action. J Clin Endocrinol Metab 84:4677–4694PubMedCrossRefGoogle Scholar
  23. Gunel N et al (2003) Serum leptin levels are associated with tamoxifen-hepatic steatosis. Curr Med Res Opin 19:47–50PubMedCrossRefGoogle Scholar
  24. Harada N, Yamada K, Saito K et al (1990) Structural characterization of the human estrogen synthetase (aromatase gene). Biochem Biophys Res Commun 166:365–372PubMedCrossRefGoogle Scholar
  25. Harden C, MacLusky NJ (2004) Aromatase inhibition, testosterone and seizures. Epilepsy Behav 5:260–263PubMedCrossRefGoogle Scholar
  26. Hermann BL et al (2002) Impact of estrogen replacement therapy in a male with congenital aromatase deficiency caused by a novel mutation in the CYP19 gene. J Clin Endocrinol Metab 87:5476–5484CrossRefGoogle Scholar
  27. Herrmann BL et al (2005) Effects of estrogen replacement therapy on bone and glucose metabolism in a male with congenital aromatase deficiency. Horm Metab Res 37:178–183PubMedCrossRefGoogle Scholar
  28. Hewitt KN et al (2003) The aromatase knockout mouse presents with a sexually dimorphic disruption to cholesterol homeostasis. Endocrinology 144:3895–3903PubMedCrossRefGoogle Scholar
  29. Hewitt KN et al (2004) Estrogen replacement reverses the hepatic steatosis phenotype in the male aromatase knockout mouse. Endocrinology 145:1842–1848PubMedCrossRefGoogle Scholar
  30. Hill RA et al (2004) Estrogen deficiency leads to apoptosis in dopaminergic neurons in the medial preoptic area and arcuate nucleus of male mice. Mol Cell Neurosci 27:466–476PubMedCrossRefGoogle Scholar
  31. Holbrook JM, Cohen PG (2003) Aromatase inhibition for the treatment of idiopathic hypogonadotropic hypogonadism in men with premature ejaculation. South Med J 96:544–547PubMedCrossRefGoogle Scholar
  32. Howell A, Cuzick J (2005) Vascular effects of aromatase inhibitors: data from clinical trials. J Steroid Biochem Mol Biol 95:143–149PubMedCrossRefGoogle Scholar
  33. Hull EM et al (1995) Extracellular dopamine in the medial preoptic area: implications for sexual motivation and hormonal control of copulation. J Neurosci 15:7465–7471PubMedGoogle Scholar
  34. Jones MEE, Thorburn AW, Britt KL et al (2000) Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity. Proc Natl Acad Sci USA 97:12735–12740PubMedCrossRefGoogle Scholar
  35. Khosla S et al (2002) Clinical review 144: estrogen and the male skeleton. J Clin Endocrinol Metab 87:1443–1450PubMedCrossRefGoogle Scholar
  36. Kimura M et al (2003) Impaired acetylcholine-induced release of nitric oxide in the aorta of male aromatase-knockout mice: regulation of nitric oxide production by endogenous sex hormones in males. Circ Res 93:1267–1271PubMedCrossRefGoogle Scholar
  37. Komesaroff PA, Sudhir K (2001) Estrogens and human cardiovascular physiology. Reprod Fertil Dev 13:261–272PubMedCrossRefGoogle Scholar
  38. Krege JH, Hodgin JB, Couse JF et al (1998) Generation and reproductive phenotypes of mice lacking estrogen receptor-β. Proc Natl Acad Sci USA 95:15677–15682PubMedCrossRefGoogle Scholar
  39. Labrie F, Belanger A, Cusan L et al (1997) Marked decline in serum concentrations of adrenal C19 sex steroid precursor and conjugated androgen metabolites during aging. J Clin Endocrinol Metab 82:2396–2402PubMedCrossRefGoogle Scholar
  40. Labrie F, Belanger A, Luu-The V et al (1998) DHEA and the intracrine formation of androgens and estrogens in peripheral target tissues: its role during aging. Steroids 63:322–328PubMedCrossRefGoogle Scholar
  41. Labrie F, Luu-The V, Labrie C et al (2003) Endocrine and intracrine sources of androgens in women: inhibition of breast cancer and other roles of androgens and their precursor dehydroepiandrosterone. Endocr Rev 24:152–182PubMedCrossRefGoogle Scholar
  42. Leder BZ et al (2004) Effects of aromatase inhibition in elderly men with low or borderline-low serum testosterone levels. J Clin Endocrinol Metab 89:1174–1180PubMedCrossRefGoogle Scholar
  43. Lephart ED et al (2001) Brain androgen and progesterone metabolizing enzymes: biosynthesis, distribution and function. Brain Res Brain Res Rev 37:25–37PubMedCrossRefGoogle Scholar
  44. Ling S et al (2004) Endogenous estrogen deficiency reduces proliferation and enhances apoptosis-related death in vascular smooth muscle cells: insights from the aromatase-knockout mouse. Circulation 109:537–543PubMedCrossRefGoogle Scholar
  45. Lubahn DB, Moyer JS, Golding TS et al (1993) Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estroven receptor gene. Proc Natl Acad Sci USA 90:11162–11166PubMedCrossRefGoogle Scholar
  46. Maffei L et al (2004) Dysmetabolic syndrome in a man with a novel mutation of the aromatase gene: effects of testosterone, alendronate, and estradiol treatment. J Clin Endocrinol Metab 89:61–70PubMedCrossRefGoogle Scholar
  47. Mauras N et al (2004) An open label 12-month pilot trial on the effects of the aromatase inhibitor anastrozole in growth hormone (GH)-treated GH deficient adolescent boys. J Pediatr Endocrinol Metab 17:1597–1606PubMedCrossRefGoogle Scholar
  48. McPherson SJ et al (2001) Elevated androgens and prolactin in aromatase-deficient mice cause enlargement, but not malignancy, of the prostate gland. Endocrinology 142:2458–2467PubMedCrossRefGoogle Scholar
  49. Means GD, Mahendroo M, Corbin CJ et al (1989) Structural analysis of the gene encoding human aromatase cytochrome P-450, the enzyme responsible for estrogen biosynthesis. J Biol Chem 264:19385–19391PubMedGoogle Scholar
  50. Mitra SW et al (2003) Immunolocalization of estrogen receptor beta in the mouse brain: comparison with estrogen receptor alpha. Endocrinology 144:2055–2067PubMedCrossRefGoogle Scholar
  51. Miyaura C et al (2001) Sex- and age-related response to aromatase deficiency in bone. Biochem Biophys Res Commun 280:1062–1068PubMedCrossRefGoogle Scholar
  52. Morishima A et al (1995) Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens. J Clin Endocrinol Metab 80:3689–3698PubMedCrossRefGoogle Scholar
  53. Nemoto Y et al (2003) Tamoxifen-induced nonalcoholic steatohepatitis in breast cancer patients treated with adjuvant tamoxifen. Intern Med 41:345–350CrossRefGoogle Scholar
  54. Nishino M et al (2003) Effects of tamoxifen on hepatic fat content and the development of hepatic steatosis in patients with breast cancer: high frequency of involvement and rapid reversal after completion of tamoxifen therapy. AJR Am J Roentgenol 180:129–134PubMedGoogle Scholar
  55. O'Donnell L et al (2001) Estrogen and spermatogenesis. Endocr Rev 22:289–318PubMedCrossRefGoogle Scholar
  56. Oettel M (2002) Is there a role for estrogens in the maintenance of men's health? Aging Male 5:248–257PubMedGoogle Scholar
  57. Ohnishi T et al (2005) CYP17 polymorphism as a risk factor of tamoxifen-induced hepatic steatosis in breast cancer patients. Oncol Rep 13:485–489PubMedGoogle Scholar
  58. Olivier B et al (1983) Effect of anterior hypothalamic and mammillary area lesions on territorial aggressive behaviour in male rats. Behav Brain Res 9:59–81PubMedCrossRefGoogle Scholar
  59. Osborne C, Tripathy D (2005) Aromatase inhibitors: rationale and use in breast cancer. Annu Rev Med 56:103–116PubMedCrossRefGoogle Scholar
  60. Oz OK et al (2000) Bone has a sexually dimorphic response to aromatase deficiency. J Bone Miner Res 15:507–514PubMedCrossRefGoogle Scholar
  61. Oz OK et al (2001) Bone phenotype of the aromatase deficient mouse. J Steroid Biochem Mol Biol 79:49–59PubMedCrossRefGoogle Scholar
  62. Oz OK, Millsaps R, Welch R et al (2001) Expression of aromatase in the human growth plate. J Mol Endocrinol 27:249–253PubMedCrossRefGoogle Scholar
  63. Pasqualini JR, Chetrite G, Blacker C et al (1996) Concentrations of estrone, estradiol, and estrone sulfate and evaluation of sulfatase and aromatase activities in pre- and postmenopausal breast cancer patients. J Clin Endocrinol Metab 81:1460–1464PubMedCrossRefGoogle Scholar
  64. Pile CJ (1999) Estrogen modulates neuronal Bcl-cL expression and beta-amyloid-induced apoptosis: relevance to Alzheimer's disease. J Neurochem 72:1552–1563Google Scholar
  65. Plourde PV et al (2004) Safety and efficacy of anastrozole for the treatment of pubertal gynecomastia: a randomized, double-blind, placebo-controlled trial. J Clin Endocrinol Metab 89:4428–4433PubMedCrossRefGoogle Scholar
  66. Pura M et al (2003) Clinical findings in an adult man with a novel mutation in the aromatase gene. In 85th Annual Meeting The Endocrine Society, Philadelphia, PAGoogle Scholar
  67. Raman JD, Schlegel PN (2003) Aromatase inhibitors for male infertility. J Urol 167:624–628CrossRefGoogle Scholar
  68. Reckelhoff JF (2001) Gender differences in the regulation of blood pressure. Hypertension 37:1199–1208PubMedCrossRefGoogle Scholar
  69. Rhoden EL, Morgentaler A (2004) Treatment of testosterone-induced gynecomastia with the aromatase inhibitor, anastrozole. Int J Impot Res 16:95–97PubMedCrossRefGoogle Scholar
  70. Riepe FE et al (2004) Treatment of pubertal gynecomastia with the specific aromatase inhibitor anastrozole. Horm Res 62:113–118PubMedCrossRefGoogle Scholar
  71. Robertson KM et al (1999) Impairment of spermatogenesis in mice lacking a functional aromatase (cyp19) gene. Proc Natl Acad Sci USA 96:7986–7991PubMedCrossRefGoogle Scholar
  72. Robertson KM et al (2001) Characterization of the fertility of male aromatase knockout mice. J Androl 22:825–830PubMedGoogle Scholar
  73. Rochira V et al (2002) Congenital estrogen deficiency in men: a new syndrome with different phenotypes: clinical and therapeutic implications in men. Mol Cell Endocrinol 193:19–28PubMedCrossRefGoogle Scholar
  74. Santen RJ et al (2001) Use of the aromatase inhibitor anastrozole in the treatment of patients with advanced prostate carcinoma. Cancer 92:2095–2101PubMedCrossRefGoogle Scholar
  75. Shozu M, Simpson ER (1998) Aromatase expression of human osteoblast-like cells. Mol Cell Endocrinol 139:117–129PubMedCrossRefGoogle Scholar
  76. Simpson ER (2004) Models of aromatase insufficiency. Remin Reprod Med 22:25–30CrossRefGoogle Scholar
  77. Simpson ER, Rubin G, Clyne C et al (2000) The role of local estrogen biosynthesis in males and females. Trends Endocrinol 5:184–188CrossRefGoogle Scholar
  78. Simpson ER et al (2002) Aromatase – a brief overview. Annu Rev Physiol 64:93–127PubMedCrossRefGoogle Scholar
  79. Smith EP, Boyd J, Frank GR et al (1994) Estrogen resistance caused by a mutation in the estrogen receptor gene in a man. N Engl J Med 331:1056–1061PubMedCrossRefGoogle Scholar
  80. Smith MR et al (2003) Selective aromatase inhibition for patients with androgen-independent prostate carcinoma. Cancer 95:1864–1868CrossRefGoogle Scholar
  81. Takeda K et al (2003) Progressive development of insulin resistance phenotype in male mice with complete aromatase (CYP19) deficiency. J Endocrinol 176:237–246PubMedCrossRefGoogle Scholar
  82. Toda K, Terashima M, Kamamoto T et al (1990) Structural and functional characterization of human aromatase. Eur J Biochem 193:559–565PubMedCrossRefGoogle Scholar
  83. Toda K, Okada T, Takeda K et al (2001a) Oestrogen at the neonatal stage is critical for the reproductive ability of male mice as revealed by supplementation with 17beta-oestradiol to aromatase gene (Cyp19) knockout mice. J Endocrinol 168:455–463PubMedCrossRefGoogle Scholar
  84. Toda K, Takeda K, Akira S et al (2001b) Alternations in hepatic expression of fatty-acid metabolizing enzymes in ArKO mice and their reversal by the treatment with 17beta-estradiol or a peroxisome proliferator. J Steriod Biochem Mol Biol 79:11–17CrossRefGoogle Scholar
  85. Wagner CK, Morrell JI (1997) Neuroanatomical distribution of aromatase MRNA in the rat brain: indications of regional regulation. J Steroid Biochem Mol Biol 61:307–314PubMedCrossRefGoogle Scholar
  86. Wickman S et al (2003) Effects of suppression of estrogen action by the P450 aromatase inhibitor letrozole on bone mineral density and bone turnover in pubertal boys. J Clin Endocrinol Metab 88:3785–3793PubMedCrossRefGoogle Scholar
  87. Zabolotny BP et al (2005) Successful use of letrozole in male breast cancer: a case report and review of hormonal therapy for male breast cancer. J Surg Oncol 90:26–30PubMedCrossRefGoogle Scholar
  88. Zhou P et al (2005) Letrozole significantly improves growth potential in a pubertal boy with growth hormone deficiency. Pediatrics 115:e245–e248PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Prince Henry's Institute of Medical ResearchClaytonAustralia

Personalised recommendations