Technical Considerations for ACHD Imaging

  • Andrew M. CreanEmail author
Part of the Medical Radiology book series (MEDRAD)


There are now more adults alive with congenital heart disease than children (Marelli et al. 2007), and many will have ongoing problems despite surgical repair. Surgery is never a cure—merely a fix—and in some cases directly introduces new problems that were not present previously (Celermajer and Greaves 2002). ACHD patients therefore generally require lifelong follow-up in specialized institutions where the technical and clinical expertise exists to recognize and deal with issues as they arise.


  1. Alfakih K, Plein S, Thiele H, Jones T, Ridgway JP, Sivananthan MU (2003a) Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 17(3):323–329PubMedGoogle Scholar
  2. Alfakih K, Plein S, Bloomer T, Jones T, Ridgway J, Sivananthan M (2003b) Comparison of right ventricular volume measurements between axial and short axis orientation using steady-state free precession magnetic resonance imaging. J Magn Reson Imaging 18(1):25–32PubMedGoogle Scholar
  3. Amraoui S, Tlili G, Sohal M, Berte B, Hindié E, Ritter P et al (2016) Contribution of PET imaging to the diagnosis of septic embolism in patients with pacing lead endocarditis. JACC Cardiovasc Imaging 9(3):283–290PubMedGoogle Scholar
  4. Bagur RH, Lederlin M, Montaudon M, Latrabe V, Corneloup O, Iriart X et al (2008) Images in cardiovascular medicine. Ebstein anomaly associated with left ventricular noncompaction. Circulation 118(16):e662–e664PubMedGoogle Scholar
  5. Bonfiglioli R, Nanni C, Morigi JJ, Graziosi M, Trapani F, Bartoletti M et al (2013) 18F-FDG PET/CT diagnosis of unexpected extracardiac septic embolisms in patients with suspected cardiac endocarditis. Eur J Nucl Med Mol Imaging 40(8):1190–1196PubMedGoogle Scholar
  6. Buechel EV, Kaiser T, Jackson C, Schmitz A, Kellenberger CJ (2009) Normal right- and left ventricular volumes and myocardial mass in children measured by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 11:19PubMedPubMedCentralGoogle Scholar
  7. Cain PA, Ahl R, Hedstrom E, Ugander M, Allansdotter-Johnsson A, Friberg P et al (2009) Age and gender specific normal values of left ventricular mass, volume and function for gradient echo magnetic resonance imaging: a cross sectional study. BMC Med Imaging 9:2PubMedPubMedCentralGoogle Scholar
  8. Cameron D, Vassiliou VS, Higgins DM, Gatehouse PD (2017) Towards accurate and precise T1 and extracellular volume mapping in the myocardium: a guide to current pitfalls and their solutions. MAGMA. Google Scholar
  9. Celermajer DS, Greaves K (2002) Survivors of coarctation repair: fixed but not cured. Heart 88(2):113–114PubMedPubMedCentralGoogle Scholar
  10. Childs H, Ma L, Ma M, Clarke J, Cocker M, Green J et al (2011) Comparison of long and short axis quantification of left ventricular volume parameters by cardiovascular magnetic resonance, with ex-vivo validation. J Cardiovasc Magn Reson 13:40PubMedPubMedCentralGoogle Scholar
  11. Choi YR, Kim H-L, Kwon H-M, Chun EJ, Ko SM, Yoo SM et al (2017) Cardiac CT and MRI for assessment of cardioembolic stroke. Cardiovasc Imaging. Asia 1(1):13Google Scholar
  12. Clay S, Alfakih K, Radjenovic A, Jones T, Ridgway JP, Sinvananthan MU (2006) Normal range of human left ventricular volumes and mass using steady state free precession MRI in the radial long axis orientation. MAGMA 19(1):41–45PubMedGoogle Scholar
  13. Crean AM, Maredia N, Ballard G, Menezes R, Wharton G, Forster J et al (2011) 3D Echo systematically underestimates right ventricular volumes compared to cardiovascular magnetic resonance in adult congenital heart disease patients with moderate or severe RV dilatation. J Cardiovasc Magn Reson 13:78PubMedPubMedCentralGoogle Scholar
  14. DeFaria Yeh D, Foster E (2014) Is MRI the preferred method for evaluating right ventricular size and function in patients with congenital heart disease?: MRI is not the preferred method for evaluating right ventricular size and function in patients with congenital heart disease. Circ Cardiovasc Imaging 7(1):198–205PubMedGoogle Scholar
  15. Deva DP, Torres FS, Wald RM, Roche SL, Jimenez-Juan L, Oechslin EN et al (2014) The value of stress perfusion cardiovascular magnetic resonance imaging for patients referred from the adult congenital heart disease clinic: 5-year experience at the Toronto General Hospital. Cardiol Young 24(5):822–830PubMedGoogle Scholar
  16. Foley JRJ, Kidambi A, Biglands JD, Maredia N, Dickinson CJ, Plein S et al (2017) A comparison of cardiovascular magnetic resonance and single photon emission computed tomography (SPECT) perfusion imaging in left main stem or equivalent coronary artery disease: a CE-MARC substudy. J Cardiovasc Magn Reson 19(1):84PubMedPubMedCentralGoogle Scholar
  17. Fratz S, Schuhbaeck A, Buchner C, Busch R, Meierhofer C, Martinoff S et al (2009) Comparison of accuracy of axial slices versus short-axis slices for measuring ventricular volumes by cardiac magnetic resonance in patients with corrected tetralogy of fallot. Am J Cardiol 103(12):1764–1769PubMedGoogle Scholar
  18. Fuchs A, Mejdahl MR, Kühl JT, Stisen ZR, Nilsson EJP, Køber LV et al (2016) Normal values of left ventricular mass and cardiac chamber volumes assessed by 320-detector computed tomography angiography in the Copenhagen General Population Study. Eur Heart J Cardiovasc Imaging 17(9):1009–1017PubMedGoogle Scholar
  19. Furuyama H, Odagawa Y, Katoh C, Iwado Y, Yoshinaga K, Ito Y et al (2002) Assessment of coronary function in children with a history of Kawasaki disease using (15)O-water positron emission tomography. Circulation 105(24):2878–2884PubMedGoogle Scholar
  20. Furuyama H, Odagawa Y, Katoh C, Iwado Y, Ito Y, Noriyasu K et al (2003) Altered myocardial flow reserve and endothelial function late after Kawasaki disease. J Pediatr 142(2):149–154PubMedGoogle Scholar
  21. Garcia-Bournissen F, Shrim A, Koren G (2006) Safety of gadolinium during pregnancy. Can Fam Physician 52:309–310PubMedPubMedCentralGoogle Scholar
  22. Geva T (2014) Is MRI the preferred method for evaluating right ventricular size and function in patients with congenital heart disease?: MRI is the preferred method for evaluating right ventricular size and function in patients with congenital heart disease. Circ Cardiovasc Imaging 7(1):190–197PubMedPubMedCentralGoogle Scholar
  23. Goyal P, Weinsaft JW (2013) Cardiovascular magnetic resonance imaging for assessment of cardiac thrombus. Methodist Debakey Cardiovasc J 9(3):132–136PubMedPubMedCentralGoogle Scholar
  24. Greaves K, Mou D, Patel A, Celermajer DS (2003) Clinical criteria and the appropriate use of transthoracic echocardiography for the exclusion of infective endocarditis. Heart 89(3):273–275PubMedPubMedCentralGoogle Scholar
  25. Greenwood JP, Maredia N, Radjenovic A, Brown JM, Nixon J, Farrin AJ et al (2009) Clinical evaluation of magnetic resonance imaging in coronary heart disease: the CE-MARC study. Trials 10:62PubMedPubMedCentralGoogle Scholar
  26. Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC et al (2012) Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet 379(9814):453–460PubMedPubMedCentralGoogle Scholar
  27. Greenwood JP, Motwani M, Maredia N, Brown JM, Everett CC, Nixon J et al (2014) Comparison of cardiovascular magnetic resonance and single-photon emission computed tomography in women with suspected coronary artery disease from the Clinical Evaluation of Magnetic Resonance Imaging in Coronary Heart Disease (CE-MARC) Trial. Circulation 129(10):1129–1138PubMedGoogle Scholar
  28. Greenwood JP, Herzog BA, Brown JM, Everett CC, Nixon J, Bijsterveld P et al (2016) Prognostic value of cardiovascular magnetic resonance and single-photon emission computed tomography in suspected coronary heart disease: long-term follow-up of a prospective, diagnostic accuracy cohort study. Ann Intern Med. Google Scholar
  29. Grosse-Wortmann L, Al-Otay A, Goo HW, Macgowan CK, Coles JG, Benson LN et al (2007) Anatomical and functional evaluation of pulmonary veins in children by magnetic resonance imaging. J Am Coll Cardiol 49(9):993–1002PubMedPubMedCentralGoogle Scholar
  30. Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S (2016) Cardiac T1 Mapping and Extracellular Volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson 18(1):89PubMedPubMedCentralGoogle Scholar
  31. Hagemann CE, Ghotbi AA, Kjær A, Hasbak P (2015) Quantitative myocardial blood flow with Rubidium-82 PET: a clinical perspective. Am J Nucl Med Mol Imaging 5(5):457–468PubMedPubMedCentralGoogle Scholar
  32. Han BK, Rigsby CK, Hlavacek A, Leipsic J, Nicol ED, Siegel MJ et al (2015a) Computed tomography imaging in patients with congenital heart disease Part I: Rationale and utility. An Expert Consensus Document of the Society of Cardiovascular Computed Tomography (SCCT): Endorsed by the Society of Pediatric Radiology (SPR) and the North American Society of Cardiac Imaging (NASCI). J Cardiovasc Comput Tomogr 9(6):475–492PubMedGoogle Scholar
  33. Han BK, Rigsby CK, Leipsic J, Bardo D, Abbara S, Ghoshhajra B et al (2015b) Computed tomography imaging in patients with congenital heart disease, Part 2: Technical Recommendations. An Expert Consensus Document of the Society of Cardiovascular Computed Tomography (SCCT): Endorsed by the Society of Pediatric Radiology (SPR) and the North American Society of Cardiac Imaging (NASCI). J Cardiovasc Comput Tomogr 9(6):493–513PubMedGoogle Scholar
  34. Hanneman K, Crean AM, Wintersperger BJ, Thavendiranathan P, Nguyen ET, Kayedpour C et al (2017) The relationship between cardiovascular magnetic resonance imaging measurement of extracellular volume fraction and clinical outcomes in adults with repaired tetralogy of Fallot. Eur Heart J Cardiovasc Imaging. Google Scholar
  35. Harel F, Finnerty V, Ngo Q, Grégoire J, Khairy P, Thibault B (2007) SPECT versus planar gated blood pool imaging for left ventricular evaluation. J Nucl Cardiol 14(4):544–549PubMedGoogle Scholar
  36. Hesse B, Lindhardt TB, Acampa W, Anagnostopoulos C, Ballinger J, Bax JJ et al (2008) EANM/ESC guidelines for radionuclide imaging of cardiac function. Eur J Nucl Med Mol Imaging 35(4):851–885PubMedGoogle Scholar
  37. Hudsmith LE, Petersen SE, Francis JM, Robson MD, Neubauer S (2005) Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging. J Cardiovasc Magn Reson 7(5):775–782PubMedGoogle Scholar
  38. Hur J, Kim YJ, Lee H-J, Nam JE, Hong YJ, Kim HY et al (2012) Cardioembolic stroke: dual-energy cardiac CT for differentiation of left atrial appendage thrombus and circulatory stasis. Radiology 263(3):688–695PubMedGoogle Scholar
  39. James SH, Wald R, Wintersperger BJ, Jimenez-Juan L, Deva D, Crean AM et al (2013) Accuracy of right and left ventricular functional assessment by short-axis vs axial cine steady-state free-precession magnetic resonance imaging: intrapatient correlation with main pulmonary artery and ascending aorta phase-contrast flow measurements. Can Assoc Radiol J 64(3):213–219PubMedGoogle Scholar
  40. Jimenez Juan L, Crean AM, Wintersperger BJ (2015) Late gadolinium enhancement imaging in assessment of myocardial viability: techniques and clinical applications. Radiol Clin N Am 53(2):397–411PubMedGoogle Scholar
  41. Johnson LL, Lawson MA (1996) New imaging techniques for assessing cardiac function. Crit Care Clin 12(4):919–937PubMedGoogle Scholar
  42. Juergens KU, Grude M, Maintz D, Fallenberg EM, Wichter T, Heindel W et al (2004) Multi-detector row CT of left ventricular function with dedicated analysis software versus MR imaging: initial experience. Radiology 230(2):403–410PubMedGoogle Scholar
  43. Koch K, Oellig F, Kunz P, Bender P, Oberholzer K, Mildenberger P et al (2004) Assessment of global and regional left ventricular function with a 16-slice spiral-CT using two different software tools for quantitative functional analysis and qualitative evaluation of wall motion changes in comparison with magnetic resonance imaging. Röfo 176(12):1786–1793PubMedGoogle Scholar
  44. Li W, Somerville J (1998) Infective endocarditis in the grown-up congenital heart (GUCH) population. Eur Heart J 19(1):166–173PubMedGoogle Scholar
  45. Lorenz CH, Walker ES, Morgan VL, Klein SS, Graham TP (1999) Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson 1(1):7–21PubMedGoogle Scholar
  46. Lotz J, Meier C, Leppert A, Galanski M (2002) Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation 1. Radiographics 22(3):651–671PubMedGoogle Scholar
  47. Maceira AM, Prasad SK, Khan M, Pennell DJ (2006) Reference right ventricular systolic and diastolic function normalized to age, gender and body surface area from steady-state free precession cardiovascular magnetic resonance. Eur Heart J 27(23):2879–2888PubMedGoogle Scholar
  48. Mahnken AH, Spuentrup E, Niethammer M, Buecker A, Boese J, Wildberger JE et al (2003) Quantitative and qualitative assessment of left ventricular volume with ECG-gated multislice spiral CT: value of different image reconstruction algorithms in comparison to MRI. Acta Radiol 44(6):604–611PubMedGoogle Scholar
  49. Marelli AJ, Mackie AS, Ionescu-Ittu R, Rahme E, Pilote L (2007) Congenital heart disease in the general population: changing prevalence and age distribution. Circulation 115(2):163–172PubMedGoogle Scholar
  50. McLaughlin P, Benson L, Horlick E (2006) The role of cardiac catheterization in adult congenital heart disease. Cardiol Clin 24(4):531–556, vPubMedGoogle Scholar
  51. Mercer-Rosa L, Yang W, Kutty S, Rychik J, Fogel M, Goldmuntz E (2012) Quantifying pulmonary regurgitation and right ventricular function in surgically repaired tetralogy of Fallot: a comparative analysis of echocardiography and magnetic resonance imaging. Circ Cardiovasc Imaging 5(5):637–643PubMedPubMedCentralGoogle Scholar
  52. Messroghli DR, Moon JC, Ferreira VM, Grosse-Wortmann L, He T, Kellman P et al (2017) Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 19(1):75PubMedPubMedCentralGoogle Scholar
  53. Moody WE, Edwards NC, Chue CD, Taylor RJ, Ferro CJ, Townend JN et al (2015) Variability in cardiac MR measurement of left ventricular ejection fraction, volumes and mass in healthy adults: defining a significant change at 1 year. Br J Radiol 88(1049):20140831PubMedPubMedCentralGoogle Scholar
  54. Mooij CF, de Wit CJ, Graham DA, Powell AJ, Geva T (2008) Reproducibility of MRI measurements of right ventricular size and function in patients with normal and dilated ventricles. J Magn Reson Imaging 28(1):67–73PubMedPubMedCentralGoogle Scholar
  55. Navare SM, Wackers FJT, Liu Y-H (2003) Comparison of 16-frame and 8-frame gated SPET imaging for determination of left ventricular volumes and ejection fraction. Eur J Nucl Med Mol Imaging 30(10):1330–1337PubMedGoogle Scholar
  56. Nayak KS, Nielsen J-F, Bernstein MA, Markl M, Gatehouse PD, Botnar RM et al (2015) Cardiovascular magnetic resonance phase contrast imaging. J Cardiovasc Magn Reson 17(1):71PubMedPubMedCentralGoogle Scholar
  57. Petersen SE, Aung N, Sanghvi MM, Zemrak F, Fung K, Paiva JM et al (2017) Reference ranges for cardiac structure and function using cardiovascular magnetic resonance (CMR) in Caucasians from the UK Biobank population cohort. J Cardiovasc Magn Reson 19(1):18PubMedPubMedCentralGoogle Scholar
  58. Pizzi MN, Roque A, Fernández-Hidalgo N, Cuéllar-Calabria H, Ferreira-González I, Gonzàlez-Alujas MT et al (2015) Improving the diagnosis of infective endocarditis in prosthetic valves and intracardiac devices with 18F-fluordeoxyglucose positron emission tomography/computed tomography angiography: initial results at an infective endocarditis referral center. Circulation 132(12):1113–1126PubMedGoogle Scholar
  59. Pizzi MN, Dos-Subirà L, Roque A, Fernández-Hidalgo N, Cuéllar-Calabria H, Pijuan Domènech A et al (2017) (18)F-FDG-PET/CT angiography in the diagnosis of infective endocarditis and cardiac device infection in adult patients with congenital heart disease and prosthetic material. Int J Cardiol 248:396–402PubMedGoogle Scholar
  60. Radenkovic D, Weingärtner S, Ricketts L, Moon JC, Captur G (2017) T1 mapping in cardiac MRI. Heart Fail Rev 22(4):415–430PubMedPubMedCentralGoogle Scholar
  61. Riesenkampff E, Messroghli DR, Redington AN, Grosse-Wortmann L (2015) Myocardial T1 mapping in pediatric and congenital heart disease. Circ Cardiovasc Imaging 8(2):e002504PubMedGoogle Scholar
  62. Roche SL, Silversides CK, Oechslin EN (2011) Monitoring the patient with transposition of the great arteries: arterial switch versus atrial switch. Curr Cardiol Rep 13(4):336–346PubMedGoogle Scholar
  63. Roman KS, Kellenberger CJ, Farooq S, MacGowan CK, Gilday DL, Yoo S-J (2005) Comparative imaging of differential pulmonary blood flow in patients with congenital heart disease: magnetic resonance imaging versus lung perfusion scintigraphy. Pediatr Radiol 35(3):295–301PubMedGoogle Scholar
  64. Salton CJ, Chuang ML, O’Donnell CJ, Kupka MJ, Larson MG, Kissinger KV et al (2002) Gender differences and normal left ventricular anatomy in an adult population free of hypertension. A cardiovascular magnetic resonance study of the Framingham Heart Study Offspring cohort. J Am Coll Cardiol 39(6):1055–1060PubMedGoogle Scholar
  65. Schelbert HR, Verba JW, Johnson AD, Brock GW, Alazraki NP, Rose FJ et al (1975) Nontraumatic determination of left ventricular ejection fraction by radionuclide angiocardiography. Circulation 51(5):902–909PubMedGoogle Scholar
  66. Schelbert EB, Piehler KM, Zareba KM, Moon JC, Ugander M, Messroghli DR et al (2015) Myocardial fibrosis quantified by extracellular volume is associated with subsequent hospitalization for heart failure, death, or both across the spectrum of ejection fraction and heart failure stage. J Am Heart Assoc 4(12):e002613PubMedPubMedCentralGoogle Scholar
  67. Sievers B, Kirchberg S, Bakan A, Franken U, Trappe H-J (2004) Impact of papillary muscles in ventricular volume and ejection fraction assessment by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 6(1):9–16PubMedGoogle Scholar
  68. Singh RM, Singh BM, Mehta JL (2014) Role of cardiac CTA in estimating left ventricular volumes and ejection fraction. World J Radiol 6(9):669–676PubMedPubMedCentralGoogle Scholar
  69. Srichai MB, Junor C, Rodriguez LL, Stillman AE, Grimm RA, Lieber ML et al (2006) Clinical, imaging, and pathological characteristics of left ventricular thrombus: a comparison of contrast-enhanced magnetic resonance imaging, transthoracic echocardiography, and transesophageal echocardiography with surgical or pathological validation. Am Heart J 152(1):75–84PubMedGoogle Scholar
  70. Stähli BE, Gebhard C, Biaggi P, Klaassen S, Valsangiacomo Buechel E, Attenhofer Jost CH et al (2013) Left ventricular non-compaction: prevalence in congenital heart disease. Int J Cardiol 167(6):2477–2481PubMedGoogle Scholar
  71. Stehning C, Börnert P, Nehrke K, Eggers H, Stuber M (2005) Free-breathing whole-heart coronary MRA with 3D radial SSFP and self-navigated image reconstruction. Magn Reson Med 54(2):476–480PubMedGoogle Scholar
  72. Strugnell WE, Slaughter IR, Riley RA, Trotter AJ, Bartlett H (2005) Modified RV short axis series—a new method for cardiac MRI measurement of right ventricular volumes. J Cardiovasc Magn Reson 7(5):769–774PubMedGoogle Scholar
  73. Sundgren PC, Leander P (2011) Is administration of gadolinium-based contrast media to pregnant women and small children justified? J Magn Reson Imaging 34(4):750–757PubMedGoogle Scholar
  74. Tobler D, Motwani M, Wald RM, Roche SL, Verocai F, Iwanochko RM et al (2014) Evaluation of a comprehensive cardiovascular magnetic resonance protocol in young adults late after the arterial switch operation for d-transposition of the great arteries. J Cardiovasc Magn Reson 16:98PubMedPubMedCentralGoogle Scholar
  75. Van Riet J, Hill EE, Gheysens O, Dymarkowski S, Herregods M-C, Herijgers P et al (2010) (18)F-FDG PET/CT for early detection of embolism and metastatic infection in patients with infective endocarditis. Eur J Nucl Med Mol Imaging 37(6):1189–1197PubMedGoogle Scholar
  76. Vermeer AMC, van Engelen K, Postma AV, Baars MJH, Christiaans I, De Haij S et al (2013) Ebstein anomaly associated with left ventricular noncompaction: an autosomal dominant condition that can be caused by mutations in MYH7. Am J Med Genet C: Semin Med Genet 163C(3):178–184Google Scholar
  77. Winter MM, Bernink FJ, Groenink M, Bouma BJ, van Dijk AP, Helbing WA et al (2008) Evaluating the systemic right ventricle by CMR: the importance of consistent and reproducible delineation of the cavity. J Cardiovasc Magn Reson 10:40PubMedPubMedCentralGoogle Scholar
  78. Yang HS (2017) Three-dimensional echocardiography in adult congenital heart disease. Korean J Intern Med 32(4):577–588PubMedPubMedCentralGoogle Scholar
  79. Yoshin aga K, Katoh C, Noriyasu K, Iwado Y, Furuyama H, Ito Y et al (2003) Reduction of coronary flow reserve in areas with and without ischemia on stress perfusion imaging in patients with coronary artery disease: a study using oxygen 15-labeled water PET. J Nucl Cardiol 10(3):275–283Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Sanghvi Endowed Chair in Cardiovascular Imaging Professor of Cardiology and PediatricsUniversity of Cincinnati Medical Center and Cincinnati Children’s Hospital Medical CenterCincinnatiUSA

Personalised recommendations